SPC-180 Series of TCSPC/FLIM Modules from Becker & Hickl

SPC-180N Series

becker-hickl.com/products/spc-180n-series

	SPC-180N	SPC-180NX	SPC-180NXX	
Photon Channel				
Principle	Constant Fraction Discriminator (CFD)			
Discriminator Input Bandwidth	4 GHz			
Time Resolution (FWHM/RMS, electr.)	6.6 ps / 2.5 ps	< 3.5 ps / 1.6 ps	< 3 ps / 1.1 ps	
Variance in Time of IRF max. (RMS)	< 0.4 ps over 100 s			
Optimum Input Voltage Range	-30 mV to -500 mV			
Min. Input Pulse Width	200 ps			
Threshold	0 to -250 mV			
Zero Cross Adjust	-100 mV to 100 mV			
Syncronisation Channel				
Principle	Constant Fraction Discriminator (CFD)			
Discriminator Input Bandwidth	4 GHz			
Optimum Input Voltage Range	-30 mV to -50	0 mV		

Min. Input Pulse Width	200 ps				
Threshold	0 to -250 mV				
Frequency Range	0 to 150 MHz				
Frequency Divider	1, 2, 4				
Zero Cross Adjust	-100 mV to 100 mV				
Time-to-Amplitude Converters / ADCs					
Principle	Ramp Generator / Biased Amplifier				
TAC Range	50 ns to 5 μs	25 ns to 2.5 μs	12.5 ns to 50 ns		
Biased Amplifier Gain	1 to 15				
Biased Amplifier Offset (of TAC Range)	0 % to 50 %				
Time Range incl. Biased Amplifier	3.3 ns to 5 µs	1.67 ns to 2.5 μs	0.834 ns to 50 ns		
Min. Time Channel Width	813 fs	407 fs	203 fs		
ADC Principle	50 ns Flash ADC with Error Correction				
Diff. Nonlinerarity	< 0.5 % RMS, typ. < 1 % peak-peak				
Data Acquisition	Histogram Mode				
Method	on-board multi-dim. histogramming process				
Dead Time	80 ns, independent of computer speed				

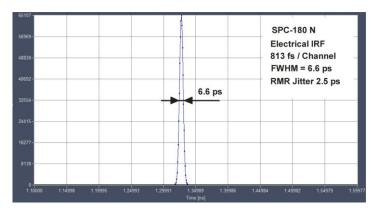
Saturated Count Rate	12 MHz
Max. Counts / Time Channel	16 bits
Overflow Control	none, stop, repeat and correct
Collection Time	0.1 μs to 100,000 s
Diplay Interval Time	10 ms to 100,000 s
Repeat Time	0.1 μs to 100,000 s
Sequencing Recording	Programmable Hardware Sequencer, unlimited recording by Memory swapping, in curve mode and scan mode
Syncronisation with Scanning	Pixel, Line and Frame from Scanning Device
Routing	7 bit, TTL
Experiment Trigger	TTL
Data Acquisition	FIFO / Parameter-Tag Mode
Method	Time and wavelength tagging of individual photons and continuous writing to disk
Online Display	Decay functions, FCS, Cross-FCS, PCH MCS Traces
FCS Calculation	Multi-tau algorithm, online calculation and online fit
Number of Counts of Decay/ Waveform Recording	unlimited
Dead Time	80 ns

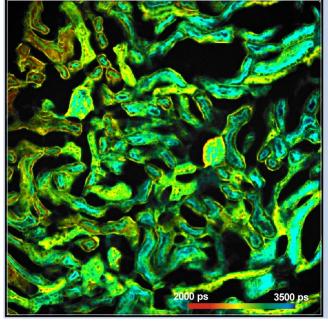
Saturated Count Rate, Peak	12 MHz
Sustained Count Rate (Bus Transfer Limit)	typ. 5 MHz
Max. Counts / Time Channel (Counting Depth)	unlimited
Output Data Format (ADC / Macrotime / Routing)	12 / 12 / 4
FIFO Buffer Capacity (Photons)	2 * 10 ⁶
Macro Timer Resolution, Internal Clock	25 ns, 12 bit, overflows marked by MOTF entry in data stream
Input Macro Timer Resolution, Clock from Sync	10 ns to 100 ns, 12 bit, overflow marked by MOTF entry in data stream
Input Curve Control (external Routing)	4 bit, TTL
External Event Markers	4 bit, TTL
Input Count Enable Control	1 bit, TTL
Input Experiment Trigger	TTL
Data Acquisition	FIFO / Parameter-Tag Imaging Mode
Method	Buildingup images from time- and wavelength tagged data
Online Display	up to 8 Images in different time and wavelength windows

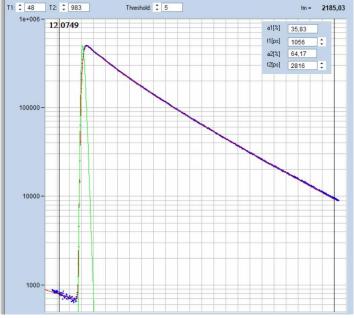
Synchronisation with Scanner	via Frame Clock, Line Clock and Pixel Clock Pulses				
Detector / Wavelength Channels	1 to 16				
Image resolution (64-bit SPCM Software)					
No. of Time Channels	64	256	1024	4096	
No. of Pixels, 1 Detector Channel	4096 x 4096	2048 x 2048	1024 x 1024	512 x 512	
No. of Pixels, 16 Detector Channels	1024 x 1024	512 x 512	256 x 256	128 x 128	
Operation Environment					
PC System	Windows 8 / 10, > 8 GB RAM, 64 bit operating system recommended				
PC Interface	PCle				
Power Consumption	approx. 12 W from +12 V				
Dimensions	230 mm x 130 mm x 18 mm				

SPC-180N

TCSPC / FLIM Module


High-Resolution Time-Correlated Single Photon Counting Module


High-throughput PCI-Express interface
Ultra-fast, ultra-stable timing electronics
Electrical IRF width 6.6 ps FWHM
Internal timing jitter 2.5 ps RMS
Time-channel width down to 813 fs
Discriminator input bandwidth 4 GHz
Photon distribution and time/parameter-tag modes
Multi-detector / multi-wavelength capability
Excitation-wavelength multiplexing
Parallel operation of 2, 3 or 4 modules
Laser repetition rates up to 150 MHz
Dead time 80 ns
Saturated count rate 12.5 MHz


Fluorescence-decay experiments
Anti-bunching experiments
Single-wavelength FLIM, multi-wavelength FLIM
Fast-acquisition FLIM
Accumulated time-series FLIM
Simultaneous FLIM / PLIM
Mosaic FLIM

Metabolic imaging Double-exponential FRET imaging FLIM of fast physiological processes Recording of Ca²⁺ transients fNIRS and NIRS experiments Single-molecule spectroscopy Fluorescence correlation

Becker & Hickl GmbH Nunsdorfer Ring 7-9 12277 Berlin, Germany Tel. +49 30 212 80 02-0 Fax. +49 30 212 80 02-13 email: info@becker-hickl.com https://www.becker-hickl.com

worldwide.

More than 28 years experience in TCSPC. More than 2500 TCSPC systems

SPC-180N

TCSPC / FLIM Module

Photon Channel

Principle
Discriminator Input Bandwidth
IRF Width, FWHM
RMS Timing Jitter
Variance in Time of IRF Centroid
Optimum Input Voltage Range
Min. Input Pulse Width
Threshold
Zero Cross Adiust

Synchronisation Channel

Principle
Discriminator Input Bandwidth
Optimal Input Voltage Range
Min. Input Pulse Width
Threshold
Frequency Range
SYNC Frequency Divider
Zero Cross Adjust

Time-to-Amplitude Converters / ADCs

Principle
TAC Range
Biased Amplifier Gain
Biased Amplifier Offset
Time Range incl. Biased Amplifier
Min. Time / Channel
ADC Principle
Diff. Nonlinearity, Electrical

Data Acquisition (Histogram Modes)

Method
Dead Time
Saturated Count Rate
Useful Count Rate
Max. Counts / Time Channel (Counting Depth)
Overflow Control
Collection Time
Display Interval Time
Repeat Time
Sequential Recording
Synchronisation with Scanning
Routing
Count Enable
Experiment Trigger

Data Acquisition (FIFO / Parameter-Tag Mode)

Method
Online Display
FCS Calculation
Number of Counts of Decay / Waveform Recording
Dead Time
Saturated Count Rate, Peak
Sustained Count Rate (Bus-transfer Limited)
Max. Counts / Time Channel (Counting Depth)
Output Data Format (ADC / Macrotime / Routing)
On-board FIFO Buffer Capacity (Photons)
Macro Timer Resolution, Internal Clock
Macro Timer Resolution, Clock from SYNC Input
Routing
External Event Markers
Experiment Triqger

Data Acquisition, FIFO Imaging

Method
Online Display
Synchronisation with Scanner
Detector / Wavelength Channels
Image Resolution, 64-bit SPCM Software
No of Time Channels
No. of Pixels, 1 Detector Channel
No. of Pixels, 16 Detector Channels

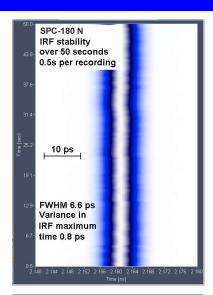
Operation Environment

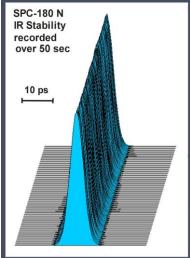
Computer / Operating System Bus Connector Total Power Consumption Dimensions Ramp Generator / Biased Amplifier 50 ns to 5 us 1 to 15 0 to 50 % of TAC Range 3.3 ns to 5 us 813 fs 50 ns Flash ADC with Error Correction < 0.5 % RMS, typ. <1 % peak-peak

on-board multi-dimensional hardware histogramming process 80 ns, independent of computer speed

80 ns, independent of computer speed

12 MHz
6 MHz
2¹⁶-1


none / stop / repeat and correct
0.1 us to 100,000 s
10 ms to 100,000 s
0.1 us to 100,000 s
Unlimited recording by memory swapping
pixel, line and frame clocks from scanning device
7 bit TTL
1 bit TTL
TTL


Parameter-tagging of individual photons and continuous writing to disk Decay function, FLIM, FCS, Cross-FCS, PCH, MCS traces Multi-tau algorithm, online calculation and online fit

unlimited 80 ns 12 MHz 5 MHz unlimited 12 / 12 / 4 bit

25 ns, 12 bit, overflows marked by MTOF entry in data stream 10 ns to 100 ns, 12 bit, overflows marked by MTOF entry in data stream

4 bit TTL 4 bit, TTL TTL

Buildup of images from time- and wavelength tagged data up to 8 images in different time and wavelength windows or from different modules via Frame Clock, Line Clock, and Pixel Clock pulses

1 to 16

64 256 1024 4096 64 256 1024×1024 512×512 1024×1024 512×512 256×256 128×128

PC Pentium, multi-core, >8GB RAM, Windows 10, Windows 11 PCI-ex approx. 12 W from +12V 230 mm x 130 mm x 18 mm

Related Products

SPC-180NX, SPC-180NXX TCSPC Modules, SPC-150N, SPC-150NX, SPC-150NXX TCSPC modules HPM-100 GaAsP and GaAs hybrid detectors, DCC-100PCle detector controller BDL-SMN ps diode lasers, BDS-SM, -SMY, -MM picosecond diode lasers, SPCImage NG data analysis software

Related Literature

W. Becker, The bh TCSPC Handbook, 9th edition (2021). 950 pages, available on https://www.becker-hickl.com. Please contact bh for printed copies. The bh TCSPC Technique, Principles and Applications. Overview brochure, 27 pages. Available on https://www.becker-hickl.com

International Sales Representatives

US: Boston Electronics Corp tcspc@boselec.com www.boselec.com

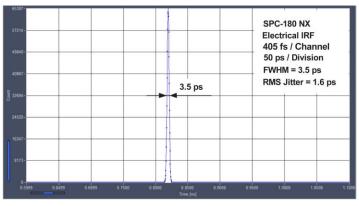
UK: Photonic Solutions PLC sales@psplc.com www.psplc.com

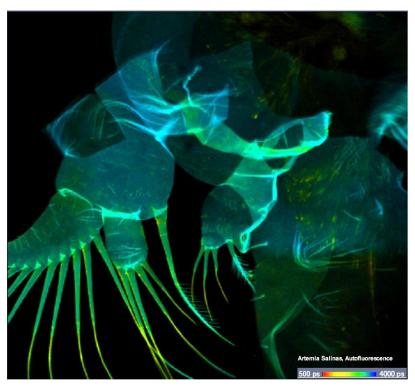
Tokyo Instruments Inc. sales@tokyoinst.co. jp www.tokyoinst.co.jp

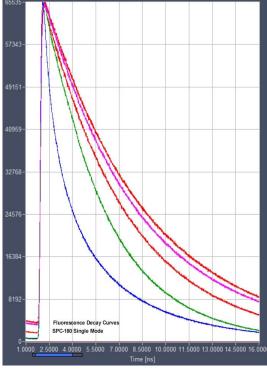
China: **DynaSense Photonics Co. Ltd.** info@dyna-sense.com www.dyna-sense.com

SPC-180NX

TCSPC / FLIM Module


High-Resolution Time-Correlated Single Photon Counting Module


High-throughput PCI-Express interface
Ultra-fast ultra-stable timing electronics
Electrical IRF width 3.5 ps FWHM
Internal timing jitter 1.6 ps RMS
Time-channel width down to 405 fs
Discriminator input bandwidth 4 GHz
Photon distribution and parameter-tag modes
Multi-detector / multi-wavelength capability
Excitation-wavelength multiplexing
Parallel operation of 2, 3 or 4 modules
Laser repetition rates up to 150 MHz
Dead time 80 ns
Saturated count rate 12.5 MHz


Fluorescence-decay experiments
Anti-bunching experiments
Single-wavelength FLIM, multi-wavelength FLIM
Fast-acquisition FLIM
Accumulated time-series FLIM
Simultaneous FLIM / PLIM
Mosaic FLIM

Metabolic imaging Double-exponential FRET imaging FLIM of fast physiological processes Recording of Ca²⁺ transients fNIRS and NIRS experiments Single-molecule spectroscopy Fluorescence correlation

Becker & Hickl GmbH Nunsdorfer Ring 7-9 12277 Berlin, Germany Tel. +49 30 212 80 02-0 Fax. +49 30 212 80 02-13 email: info@becker-hickl.com https://www.becker-hickl.com

SPC-180NX

TCSPC / FLIM Module

SPC-180 NX

IRF Stability

over 100 sec

Photon Channel

Discriminator Input Bandwidth IRF Width, FWHM RMS Timing Jitter Variance in Time of IRF Centroid Optimum Input Voltage Range Min. Input Pulse Width Threshold Zero Cross Adiust

Synchronisation Channel

Discriminator Input Bandwidth Optimal Input Voltage Range Min. Input Pulse Width Threshold Frequency Range SYNC Frequency Divider Zero Cross Adjust

Time-to-Amplitude Converters / ADCs

Principle TAC Range Biased Amplifier Gain Biased Amplifier Offset Time Range incl. Biased Amplifier Min. Time / Channel ADC Principle
Diff. Nonlinearity, Electrical

Data Acquisition (Histogram Modes)

Method Dead Time Saturated Count Rate Useful Count Rate Max. Counts / Time Channel (Counting Depth) Overflow Control Collection Time Display Interval Time Repeat Time Sequential Recording Synchronisation with Scanning Count Enable Experiment Trigger

Data Acquisition (FIFO / Parameter-Tag Mode)

Method Online Display FCS Calculation Number of Counts of Decay / Waveform Recording Dead Time Saturated Count Rate, Peak Sustained Count Rate (Bus-transfer Limited)
Max. Counts / Time Channel (Counting Depth) Output Data Format (ADC / Macrotime / Routing) On-board FIFO Buffer Capacity (Photons) Macro Timer Resolution, Internal Clock Macro Timer Resolution, Clock from SYNC Input Routing External Event Markers **Experiment Trigger**

Data Acquisition, FIFO Imaging

Method Online Display Synchronisation with Scanner Detector / Wavelength Channels Image Resolution, 64-bit SPCM Software No of Time Channels
No. of Pixels, 1 Detector Channel
No. of Pixels, 16 Detector Channels

Operation Environment

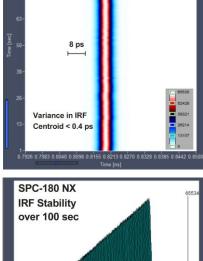
Computer / Operating System Bus Connector Used PCI-ex Slots Total Power Consumption Dimensions

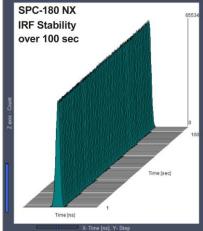
Constant Fraction Discriminator (CFD) 4 GHz < 3.5 ps, FWHM < 1.6 ps, RMS < 1.6 ps, RMS < 0.4 ps RMS over 100 seconds - 30 mV to - 500 mV 200 ps 0 to - 250 mV - 100 mV to + 100 mV

Constant Fraction Discriminator (CFD) 4 GHz - 30 mV to - 500 mV 200 ps 0 to - 250 mV 0 to 150 MHz 1 - 2 - 4 -100 mV to + 100 mV

Ramp Generator / Biased Amplifier 25 ns to 2.5 us 1 to 15 0 to 50 % of TAC Range 1.67 ns to 2.5 us 405 fs 50 ns Flash ADC with Error Correction < 0.5 % RMS, typ. <1 % peak-peak

on-board multi-dimensional hardware histogramming process 80 ns, independent of computer speed


12 MHz 6 MHz 2¹⁶-1 none / stop / repeat and correct 0.1 us to 100,000 s 10 ms to 100,000 s 0.1 us to 100,000 s Unlimited recording by memory swapping pixel, line and frame clocks from scanning device 7 bit TTL 1 bit TTL TTL


Parameter-tagging of individual photons and continuous writing to disk Decay function, FCS, Cross-FCS, PCH, MCS traces Multi-tau algorithm, online calculation and online fit

unlimited 80 ns 12 MHz 5 MHz unlimited 12 / 12 / 4 bit

25 ns, 12 bit, overflows marked by MTOF entry in data stream 10 ns to 100 ns, 12 bit, overflows marked by MTOF entry in data stream

4 bit TTI

Buildup of images from time- and wavelength tagged data up to 8 images in different time and wavelength windows or from different modules via Frame Clock, Line Clock, and Pixel Clock pulses 1 to 16

> 64 256 1024 4096 4096 x 4096 2048 x 2048 512 x 512 1024 x 1024 512 x 512 256 x 256 128 x 128

> > PC Pentium, multi-core, >8GB RAM, Windows 10 PCI-ex approx. 12 W from +12V 230 mm x 130 mm x 18 mm

Related Products
SPC-150NX, SPC-150NXX TCSPC modules, HPM-100 GaAsP and GaAs hybrid detectors, DCC-100PCIe detector controller BDL-SMN ps diode lasers, BDS-SM, -SMY, -MM picosecond diode lasers, SPCImage NG data analysis software

W. Becker, The bh TCSPC Handbook, 9th edition (2021). 950 pages, available on https://www.becker-hickl.com. Please contact bh for printed copies. The bh TCSPC Technique, Principles and Applications. Overview brochure, 27 pages. Available on https://www.becker-hickl.com

International Sales Representatives

US: Boston Electronics Corp tcspc@boselec.com www.boselec.com

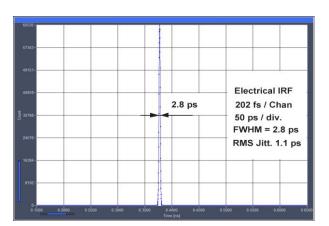
Photonic Solutions PLC sales@psplc.com www.psplc.com

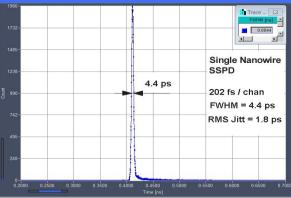
Tokyo Instruments Inc. sales@tokyoinst.co. jp www.tokyoinst.co.jp

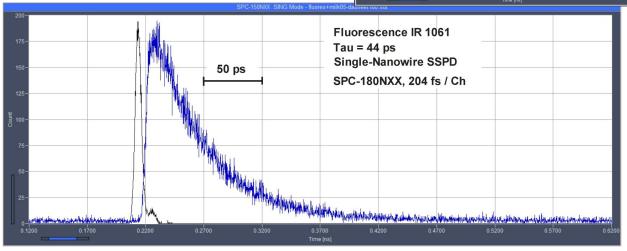
China: DynaSense Photonics Co. Ltd. info@dvna-sense.com www.dvna-sense.com

SPC-180NXX

Ultrafast TCSPC Module


Time-Correlated Single Photon Counting Module for Ultra-Fast Detectors


High-throughput PCI-Express interface Ultra-fast, ultra-stable timing electronics Electrical IRF width < 3 ps FWHM Internal RMS timing jitter 1.1 ps Minimum time channel width 203 fs Ultra-high IRF stability Input discriminator bandwidth 4 GHz Photon distribution and parameter-tag modes Multi-detector / multi-wavelength capability **Dual time-base operation** Parallel operation of modules Laser repetition rates up to 150 MHz Saturated count rate 10 MHz


Ideal for superconducting NbN detectors (SSPDs) Ultra-fast fluorescence lifetime experiments Ultra-fast light scattering experiments **Anti-bunching experiments** Multi-wavelength lifetime experiments Recording of transient fluorescence lifetime effects Single-wavelength FLIM, multi-wavelength FLIM High-resolution FLIM, time-series FLIM Mosaic FLIM, lateral, longitudinal, temporal mosaics Simultaneous PLIM and FLIM **FLITS Double-exponential FRET imaging** Recording of Ca²⁺ transients **fNIRS** and NIRS experiments

Single-molecule spectroscopy

FCS, FCCS, PCH

Becker & Hickl GmbH Nunsdorfer Ring 7-9 12277 Berlin, Berlin +49 / 30 / 212 80 02 0 +49 / 30 / 212 80 02 13 Fax.

email: info@becker-hickl.com www.becker-hickl.com

More than 28 years experience in TCSPC. More than 2500 TCSPC systems worldwide.

SPC-180NXX

Ultrafast TCSPC Module

SPC-180 NXX

FWHM of IRF 2.8 ps

SPC-180 NXX

IRF Stability

over 100 seconds

8 ps

0.5 s per recording

Variance in Centroid of IRF < 0.4 ps rms

8 ps

IRF Stability over 100 seconds. 0.5 s per recording

Photon Channel

Discriminator Input Bandwidth IRF Width, FWHM

RMS Timing Jitter Variance in Time of IRF Centroid Optimum Input Voltage Range Min. Input Pulse Width Threshold

Zero Cross Adiust **Synchronisation Channel**

Zero Cross Adjust

Discriminator Input Bandwidth Optimal Input Voltage Range Min. Input Pulse Width Threshold Frequency Range SYNC Frequency Divider

Time-to-Amplitude Converters / ADCs

Principle TAC Range Biased Amplifier Gain Biased Amplifier Offset Time Range incl. Biased Amplifier Min. Time / Channel ADC Principle
Diff. Nonlinearity, Electrical

Data Acquisition (Histogram Modes)

Method Dead Time Saturated Count Rate Max. Counts / Time Channel (Counting Depth) Overflow Control Collection Time Display Interval Time Repeat Time Sequential Recording
Synchronisation with Scanning Routing Count Enable **Experiment Trigger**

Data Acquisition (FIFO / Parameter-Tag Mode)

Method Online Display FCS Calculation Number of Counts of Decay / Waveform Recording Dead Time Saturated Count Rate, Peak

Sustained Count Rate (Bus-transfer Limited) Max. Counts / Time Channel (Counting Depth)
Output Data Format (ADC / Macrotime / Routing)

FIFO Buffer Capacity (Photons) Macro Timer Resolution, Internal Clock

Macro Timer Resolution, Clock from SYNC Input

Routing Count Enable External Event Markers

Experiment Trigger

FLIM Data Acquisition, FIFO Imaging Mode

Method Online Display Synchronisation with Scanner Detector / Wavelength Channels Image Resolution, 64-bit SPCM Software No of Time Channels
No. of Pixels, 1 Detector Channel
No. of Pixels, 16 Detector Channels

Operation Environment

Computer System Bus Connectors Used PCI Slots Total Power Consumption Dimensions

Related Products SPC-180N, SPC-180NX TCSPC modules SPC-150N, SPC-150NX, SPC-150NXX TCSPC Modules DCS-120 FLIM Systems

Related Literature

4.4 ps IRF width of TCSPC with an NbN Superconducting Nanowire Single Photon Detector. Application note, please see www.becker-hickl.com W. Becker, The bh TCSPC Handbook, 9th edition (2021). Available on www.becker-hickl.com. Contact bh for printed copies.

International Sales Representatives Boston Electronics

Boston Electronics Corp tcspc@boselec.com www.boselec.com

Photonic Solutions PLC sales@psplc.com www.psplc.com

TII TOKYO INSTRUMENTS, INC.

Tokyo Instruments Inc. sales@tokyoinst.co. jp

HPM-100 detectors

PML-SPEC and MW-FLIM multi-wavelength detectors PMC-150 cooled PMT modules

www.tokyoinst.co.jp

DynaSense Photonics Co. Ltd. info@dvna-sense.com www.dvna-sense.com

Constant Fraction Discriminator (CFD) 4 GHz 43 ps, FWHM 1.1 ps, RMS <0.4 ps RMS over 100 seconds - 30 mV to - 500 mV 200 ps 0 to - 250 mV - 100 mV to + 100 mV

Constant Fraction Discriminator (CFD) 4 GHz - 30 mV to - 500 mV 200 ps 0 to - 250 mV 0 to 150 MHz 1 - 2 - 4 -100 mV to + 100 mV

Ramp Generator / Biased Amplifier 12.5 ns, 25 ns, 50 ns 1 to 15 0 to 50 % of TAC Range 0.834 ns to 50 ns 203 fs 50 ns Flash ADC with Error Correction < 0.5 % RMS, typ. <1 % peak-peak

on-board multi-dimensional hardware histogramming process 100 ns, independent of computer speed

10 MHz 2¹⁶-1 none / stop / repeat and correct 0.1 us to 100,000 s 10 ms to 100,000 s 0.1 us to 100,000 s Unlimited recording by memory swapping pixel, line and frame clocks from scanning device

7 bit TTL 1 bit TTL

Parameter-tagging of individual photons and continuous writing to disk Decay function, FCS, Cross-FCS, PCH, MCS traces
Multi-tau algorithm, online calculation and online fit

unlimited 80 ns 10 MHz typ. 4 MHz unlimited 12 / 12 / 4 bit 2.106

50 ns, 12 bit, overflows marked by MTOF entry in data stream
10 ns to 100 ns, 12 bit, overflows marked by MTOF entry in data stream
4 bit TTL

1 bit TTI

Buildup of images from time- and wavelength tagged data up to 8 images in different time and wavelength windows or from different modules via Frame Clock, Line Clock, and Pixel Clock pulses 1 to 16

> 64 256 1024 4096 2048 x 2048 512 x 512 1024 x 1024 512 x 512 256 x 256 128 x 128

PC Pentium, multi-core, >8GB RAM, Windows 10, Windows 11 PCI-ex

approx. 12 W from +12V 240 mm x 130 mm x 15 mm

DCC-100 detector controller

BDL-SMN ps diode lasers BDS-SM, -SMY, -MM picosecond diode lasers