

**Boston** 91 Boylston Street, Brookline, MA 02445 tel: (617)566-3821 fax: (617)731-0935 www.boselec.com tcspc@boselec.com



# PC Based **Systems**



**Becker & Hickl GmbH** Nahmitzer Damm 30 12277 Berlin, Gemany Tel: +49 30 787 56 32 Fax: +49 30 787 57 34 www.becker-hickl.de





### Full Set of FLIM Cards with PCI Express Interface Available

December 2016 - Becker & Hickl have released a full set of PCI Express cards for TCSPC FLIM system. The set consists of one or two SPC-160pcie TCSPC / FLIM modules and a DCC-100pcie detector controller. For the bh DCS-120 scanners or for customer-specific galvanometer scanners a GVD-120pcie scan controller can be added to the system.

The system works with all the commonly used confocal and multiphoton laser scanning microscopes, and with the bh DCS-120 confocal and multiphoton systems. It records single and dual-channel FLIM, FCS, multi-wavelength FLIM, Z-stack FLIM, lateral mosaic FLIM, ultra-fast time-series FLIM and, for the DCS-120 system, simultaneous FLIM/PLIM.

Online FLIM is available up to an image rate of about 10 images per second. The system is using 64-bit data acquisition software. Images as large as 2048x2048 pixels and 256 time channels can be recorded. The electronic time resolution of the SPC-160pcie is 2.5 ps rms, the minimum time channel width is 813 fs.

Attached, for reference is the SPC-160 PCIE data sheet.





## SPC-160 PCIE TCSPC/ FLIM Module

#### **TCSPC / FLIM Module with PCI Express Interface**

Input discriminator bandwidth 4 GHz Sub-ps low-frequency timing wobble Multi-detector / multi-wavelength capability Photon distribution and parameter-tag modes FLIM by bh Megapixel Technology Mosaic FLIM mode Multiscaler imaging mode Parallel counter channel for FLIM intensities Parallel operation of 2, 3 or 4 modules Time channel width down to 813 fs Electrical time resolution (Jitter) 2.5 ps rms Laser repetition rates up to 150 MHz Saturated count rate 12.5 MHz TCSPC dead time 80 ns Intensity-channel dead time <10 ns

Standard fluorescence lifetime experiments Multi-wavelength lifetime experiments Recording of transient fluorescence lifetime effects Single-wavelength FLIM, multi-wavelength FLIM Fast-acquisition FLIM, time-series FLIM Mosaic FLIM, lateral, longitudinal, temporal mosaics FLITS Simultaneous PLIM and FLIM Single and double-exponential FRET imaging Recording of Ca<sup>2+</sup> transients

fNIRS and NIRS experiments Single-molecule spectroscopy FCS, FCCS, Photon Counting Histograms Anti-bunching experiments





 Becker & Hickl GmbH

 Nahmitzer Damm 30

 12277 Berlin, Berlin

 Tel.
 +49 / 30 / 787 56 32

 Fax.
 +49 / 30 / 787 57 34

 email: info@becker-hickl.com

 www.becker-hickl.com

US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com



UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com

#### TII TOKYO INSTRUMENTS, INC.

Japan: Tokyo Instruments Inc. sales@tokyoinst.co.jp www.tokyoinst.co.jp

### Dyna Sense

China: DynaSense Photonics Co. Ltd. info@dyna-sense.com www.dyna-sense.com







## SPC-160 PCIE TCSPC / FLIM Module

| Principle<br>Discriminator Input Bandwidth<br>Time Resolution (FWHM / RMS, electr.)<br>Variance in time of IRF maximum<br>Optimum Input Voltage Range<br>Min. Input Voltage Range<br>Min. Input Pulse Width<br>Threshold<br>Zero Cross Adjust | <1<br>-                                   | Fraction Discrimin<br>4 GHz<br>6.6 ps / 2.5 ps<br>ps over 50 seco<br>30 mV to - 500 n<br>200 ps<br>0 to - 250 mV<br>100 mV to + 100 | nds<br>nV                |                                         | 50.0-<br>43.8-<br>37.6- |                                            | IRF stability<br>over 50 s<br>0.5s per<br>recording |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------|--------------------------------------------|-----------------------------------------------------|
| ynchronisation Channels                                                                                                                                                                                                                       |                                           | 100 1117 10 + 100                                                                                                                   | iii v                    |                                         |                         |                                            |                                                     |
| Principle<br>Discriminator Input Bandwidth                                                                                                                                                                                                    | Constant                                  | Fraction Discrimir<br>4 GHz                                                                                                         | nator (CFD)              |                                         | 31.4-                   |                                            |                                                     |
| Optimal Input Voltage Range<br>Min. Input Pulse Width                                                                                                                                                                                         | -                                         | 30 mV to - 500 n<br>200 ps                                                                                                          | ۱V                       |                                         | 100                     |                                            | 10 ps                                               |
| Threshold                                                                                                                                                                                                                                     |                                           | 0 to -250 mV                                                                                                                        |                          |                                         | 25.2-                   |                                            | HO PS                                               |
| Frequency Range<br>Frequency Divider                                                                                                                                                                                                          |                                           | 0 to 150 MHz<br>1-2-4                                                                                                               |                          |                                         |                         |                                            |                                                     |
| Zero Cross Adjust                                                                                                                                                                                                                             | -1                                        | 00 mV to + 100 r                                                                                                                    | nV                       |                                         | 19.1 -                  |                                            | FWHM 6.6 ps                                         |
| me-to-Amplitude Converters / ADCs<br>Principle                                                                                                                                                                                                | Ramp G                                    | enerator / Biased                                                                                                                   | Amplifier                |                                         | 12.9-                   |                                            | Variance in<br>IRF maximur                          |
| TAC Range<br>Biased Amplifier Gain                                                                                                                                                                                                            |                                           | 50 ns to 5 us<br>1 to 15                                                                                                            |                          |                                         |                         |                                            | time 0.8 ps                                         |
| Biased Amplifier Offset<br>Time Range incl. Biased Amplifier                                                                                                                                                                                  | 0 t                                       | o 50% of TAC Ra<br>3.3 ns to 5 us                                                                                                   | inge                     |                                         | 6.7-                    |                                            |                                                     |
| min. Time / Channel                                                                                                                                                                                                                           |                                           | 813 fs                                                                                                                              |                          |                                         |                         |                                            |                                                     |
| ADC Principle<br>Diff. Nonlinearity, electrical                                                                                                                                                                                               |                                           | sh ADC with Error<br>rms, typ. <1% pe                                                                                               |                          |                                         | 0.5-                    | , aire aire aire aire :                    | nie nie nie nie                                     |
| ata Acquisition (Histogram Mode)                                                                                                                                                                                                              |                                           |                                                                                                                                     |                          |                                         |                         | 4 2.148 2.152 2.196 2.160 ;<br>Time [ns]   | 2.164 2.168 2.172 2.176                             |
| Method<br>Dead Time                                                                                                                                                                                                                           |                                           |                                                                                                                                     |                          | ional histogrammi<br>ent of computer sp |                         |                                            |                                                     |
| Saturated Count Rate<br>Useful count rate                                                                                                                                                                                                     |                                           |                                                                                                                                     | 12                       | 2.5 MHz<br>25 MHz                       |                         |                                            |                                                     |
| Channels / Pixel                                                                                                                                                                                                                              |                                           | 024 256                                                                                                                             | 64                       | 16                                      | 4                       | 1                                          |                                                     |
| max. Scanning Area<br>max. Counts / Time Channel                                                                                                                                                                                              | 16x16 64                                  | 4x64 128 x 1                                                                                                                        |                          | 56 512x512<br>2 <sup>16</sup> -1        | 1024x10                 | )24 2048x204                               | 8                                                   |
| Overflow Control<br>Collection Time                                                                                                                                                                                                           |                                           |                                                                                                                                     |                          | repeat and correct<br>to 100,000 s      | ct                      |                                            |                                                     |
| Display Interval Time                                                                                                                                                                                                                         |                                           |                                                                                                                                     | 0.1 us                   | to 100,000 s                            |                         |                                            |                                                     |
| Repeat Time<br>Sequential Recording                                                                                                                                                                                                           | Programmable Har                          | dware Sequencer                                                                                                                     |                          | to 100,000 s<br>rding by memory :       | swapping, in cu         | urve mode and scan                         | mode                                                |
| Synchronisation with Scanning                                                                                                                                                                                                                 | - 3                                       | pixel,                                                                                                                              | line and frame c         | locks from scann                        | ing device              |                                            |                                                     |
| Count Enable Control<br>Experiment Trigger                                                                                                                                                                                                    |                                           |                                                                                                                                     | 1                        | bit TTL<br>TTL                          |                         |                                            |                                                     |
| <b>ata Acquisition (FIFO / Parameter-Tag Mode)</b><br>Method                                                                                                                                                                                  |                                           | Doromotor toggi                                                                                                                     | og of individual r       | abatana and aanti                       | nuovo viriting t        | a diak                                     |                                                     |
| Online display                                                                                                                                                                                                                                |                                           | Decay                                                                                                                               | unction, FCS, C          | photons and conti<br>cross-FCS, PCH,    | MCS traces              | U UISK                                     |                                                     |
| FCS calculation<br>Number of counts of decay / waveform recording                                                                                                                                                                             |                                           | Multi-ta                                                                                                                            |                          | line calculation ar<br>nlimited         | id online fit           |                                            |                                                     |
| Dead Time                                                                                                                                                                                                                                     |                                           |                                                                                                                                     |                          | 80 ns                                   |                         |                                            |                                                     |
| Saturated count rate, peak<br>Sustained count rate (bus-transfer limited)                                                                                                                                                                     |                                           |                                                                                                                                     | typ                      | 2.5 MHz<br>o. 4 MHz                     |                         |                                            |                                                     |
| Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)                                                                                                                                                              |                                           |                                                                                                                                     | 12                       | 2/12/4<br>2M                            |                         |                                            |                                                     |
| Macro Timer Resolution, internal clock<br>Macro Timer Resolution, clock from SYNC input                                                                                                                                                       |                                           |                                                                                                                                     |                          | ed by MTOF entr<br>marked by MTOF       |                         |                                            |                                                     |
| Curve Control (external Routing)                                                                                                                                                                                                              |                                           |                                                                                                                                     | 4                        | bit TTL                                 | entry in data s         | sileani                                    |                                                     |
| External event markers<br>Count Enable Control                                                                                                                                                                                                |                                           |                                                                                                                                     |                          | bit, TTL<br>bit TTL                     |                         |                                            |                                                     |
| Experiment trigger                                                                                                                                                                                                                            |                                           |                                                                                                                                     |                          | TTL                                     |                         |                                            |                                                     |
| ata Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method                                                                                                                                                                                  |                                           | Buildup of                                                                                                                          | images from tim          | ne- and waveleng                        | th tanned data          |                                            |                                                     |
| Online display                                                                                                                                                                                                                                |                                           | up to 8 ga                                                                                                                          | ated intensity im        | ages or up to 8 lif                     | etime images            |                                            |                                                     |
| Synchronisation with scanner<br>Dead Time                                                                                                                                                                                                     |                                           |                                                                                                                                     |                          | Clock, and Pixel C<br>tensity Channel:  |                         |                                            |                                                     |
| Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)                                                                                                                                                           |                                           |                                                                                                                                     | 1                        | 1 to 16                                 |                         |                                            |                                                     |
| time channels / pixel                                                                                                                                                                                                                         | 64                                        | 256                                                                                                                                 | 1024                     | 4096                                    | 4096                    | 4096                                       |                                                     |
| No. of pixels, 1 detector channel<br>No. of pixels, 16 detector channels (MW FLIM detector)                                                                                                                                                   | 4096 x 4096<br>1024 x 1024                | 2048 x 2048<br>512 x 512                                                                                                            | 1024 x 1024<br>256 x 256 | 512 x 512<br>128 x 128                  | 256 x 256<br>128 x 128  | 128 x 128<br>128 x 128                     |                                                     |
| peration Environment                                                                                                                                                                                                                          |                                           |                                                                                                                                     |                          |                                         |                         |                                            |                                                     |
| Computer System<br>Bus Connectors                                                                                                                                                                                                             | PC                                        | Pentium, multi-co                                                                                                                   | re, >8GB RAM a           | and 64 bit operati<br>PCI               | ng system reco          | ommended                                   |                                                     |
| Used PCI Slots                                                                                                                                                                                                                                |                                           |                                                                                                                                     |                          | 1                                       |                         |                                            |                                                     |
| Total power Consumption<br>Dimensions                                                                                                                                                                                                         |                                           | ap                                                                                                                                  |                          | n +5V, 0.7 W from<br>130 mm x 15 mm     | i +12V                  |                                            |                                                     |
| elated Products                                                                                                                                                                                                                               |                                           |                                                                                                                                     |                          |                                         |                         |                                            |                                                     |
| SPC-160 TCSPC / FLIM modules<br>SPC-150 and SPC-150N TCSPC modules                                                                                                                                                                            |                                           | nfocal scanning I<br>aAsP and GaAs I                                                                                                |                          |                                         |                         | and BDS ps diode la<br>detector controller | asers                                               |
| Simple-Tau compact TCSPC systems                                                                                                                                                                                                              | PML-SPEC                                  | and MW-FLIM m<br>20 Si and InGaAs                                                                                                   | ulti-wavelength o        |                                         | GVD-120 s               | scan controller                            | odule                                               |
| FLIM systems for laser scanning microscopes<br>elated Literature                                                                                                                                                                              | iu-100, id-22                             | o orand ingaAs                                                                                                                      | SPAD detector            | modules                                 | DD-32 USI               | B-controlled delay m                       | ouule                                               |
| W. Becker, Advanced time-correlated single photon countin<br>W. Becker (ed.), Advanced time-correlated single photon co<br>W. Becker, The bh TCSPC Handbook, 6th edition, 2015. 76                                                            | unting pplications.<br>8 pages, 1007 refe | Springer 2015. P<br>rences. Available                                                                                               | lease contact bh         | n for availability.                     | act bh for printe       | ed copies.                                 |                                                     |
| DCS-120 Confocal Scanning FLIM Systems, handbook. Ava<br>Modular FLIM systems for Zeiss LSM 510 and LSM 710 last                                                                                                                              | mable of www.bec                          | Kei-HICKI.COM                                                                                                                       |                          |                                         |                         |                                            |                                                     |

### **SPC-130**

### **Time-Correlated Single Photon Counting Module**

Saturated Count Rate 10 MHz Decay curves measured in seconds Dead Time 100ns Dual Memory Architecture: Readout during Measurement Reversed Start/Stop: Repetition Rates up to 200 MHz Electrical Time Resolution down to 8 ps FWHM / 5 ps rms Channel Resolution down to 813 fs Up to 4096 Time Channels / Curve Measurement Times down to 0.1 ms Instrument Software for Windows 2000 / NT / XP / VISTA Direct Interfacing to most Detector Types Single Decay Curve Mode Oscilloscope Mode Sequential recording Segential Recording Mode Spectrum Scan Mode with 8 Independent Time Windows **Continuous Flow Mode** FIFO / Time Tag Mode for FCS, FIDA, FILDA, BIFL 2 86 Canves 2 1 First 0.08 \$ .000 Fluorescence decay of single molecules 3.0 -3.6 -3.2 -3.0 -2.8 -2.8 -2.8 -2.8 -2.8 -2.8 -Sector Marine € 128 Time [ns], Y- Point X Curves First 1 1e8 ate [Ph./s] Measurement in progress Device state: 1e7 SYNC OK 1e6 5.50E+5 2.0-1.8-1.6-1.4-1.2-Displaying data from file c\bhappl\spc\spc134.sdt 1e5 4.95E+5 1e4 TAC CFD SYN Time Fluorescence correlation 1e3 Collection 1.0 Range Limit Low ŧ Thres 100 2 70E+5 Step./CFD 2.00 \$ 50.00E-9 -100.00 -49.02 10 SYNC CFD TAC ADC



**Becker & Hickl GmbH** Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com www.becker-hickl.com



www.becker-hickl.com US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com



Covered by patents DE 43 39 784 and DE 43 39 787

## **SPC-130**

#### Photon Channel

Principle Time Resolution (FWHM / RMS, electr.) Opt. Input Voltage Range Min. Input Pulse Width Lower Threshold Upper Threshold Zero Cross Adjust

#### Synchronisation Channel

Principle Opt. Input Voltage Range Min. Input Pulse Width Threshold Frequency Range Frequency Divider Zero Cross Adjust

#### Time-to-Amplitude Converter / ADC

Principle TAC Range Biased Amplifier Gain Biased Amplifier Offset Time Range incl. Biased Amplifier min. Time / Channel ADC Principle Diff. Nonlinearity

#### **Data Acquisition**

Method Dead Time max. Number of Curves in Memory Number of Time Channels / Curve max. Counts / Channel Overflow Control Collection Time Display Interval Time Repeat Time Curve Control (internal) Count Enable Control Experiment Trigger

#### Data Acquisition (FIFO / Time-Tag Mode)

Method Dead Time Output Data Format (ADC / Macrotime / Routing) FIFO buffer Capacity (photons) Macro Timer Resolution, internal clock Macro Timer Resolution, clock from SYNC input Curve Control (external Routing) Count Enable Control

#### **Operation Environment**

Computer System Bus Connectors Used PCI Slots Power Consumption Dimensions

#### Related Products and Accessories

Detectors (MCPs, PMTs), multichannel detector heads, routing devices for multi-detector operation, detector controllers, detector / shutter assemblies, preamplifiers, PIN and avalanche photodiode modules, ps diode lasers with multiplexing capability. Also available: SPC-134, SPC-144, SPC-154, SPC-630, and SPC-830 time-correlated single photon counting modules, gated photon counters and multiscalers. Please call for individual data sheets and manuals.

Please see www.becker-hickl.com for free download of bh TCSPC handbook, device software and application literature.



Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax +49 / 30 / 787 57 34 ihttp://www.becker-hickl.com info@becker-hickl.com

#### **Boston Electronics Corporation**

91 Boylston Street, Brookline. Massachusetts 02445 USA Tel: (800) 347 5445 or (617) 566 3821, Fax: (617) 731 0935 www.boselec.com tcspc@boselec.com



0 to 200 MHz 1-2-4 -100 mV to + 100 mV Ramp Generator / Biased Amplifier 50 ns to 2 us 1 to 15 0 to 100% of TAC Range 3.3 ns to 2 us 813 fs

Constant Fraction Discriminator (CFD)

8 ps / 5 ps - 50 mV to - 1 V

400 ps

- 20 mV to - 500 mV

- 100 mV to + 100 mV

Constant Fraction Discriminator (CFD)

- 50 mV to - 1 V

400 ps

- 20 mV to -500 mV

40 ns Flash ADC with Error Correction < 0.8% rms, typ. <2% peak-peak

on-board 2-dimensional histogramming process 100 ns, independent of computer speed 4096 1024 256 64 64 256 1024 4096 2<sup>16</sup>-1 none / stop / repeat and correct 0.1 us to 10000 s 10ms to 1000 s 0.1 us to 1000 s Programmable Hardware Sequencer 1 bit TTL TTI

Time-tagging of individual photons and continuous writing to disk 100 ns 12 / 12 / 3 128 k 50ns, 12 bit 10ns to 100ns, 12 bit 3 bit TTL 1 bit TTL PC Pentium PCI 1

approx. 45 W at +5V, 2 W at +12V 225 mm x 115 mm x 25 mm

## TCSPC Module

### **SPC-130 EM**

### General-Purpose Time-Correlated Single Photon Counting Module

Picosecond resolution Ultra-high sensitivity Multi-detector / multi-wavelength capability High-speed on-board data acquisition Photon distribution and time-tag modes Unlimited sequential recording of curves or images Time channel width down to 813 fs Electrical time resolution (jitter) 6.6 ps fwhm / 2.5 ps rms Reversed start/stop: Laser repetition rates up to 150 MHz Saturated count rate 10 MHz Total useful recorded count rate up to 5 MHz Dead time 100 ns

Standard fluorescence lifetime experiments Multi-wavelength lifetime experiments Transient fluorescence lifetime effects Fluorescence correlation Anti-bunching experiments Single-molecule spectroscopy









 Technology Leader in TCSPC

 Nahmitzer Damm 30

 12277 Berlin, Berlin

 Tel.
 +49 / 30 / 787 56 32

 Fax.
 +49 / 30 / 787 57 34

 email: info@becker-hickl.com

 www.becker-hickl.com

Becker & Hickl GmbH

US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com



Covered by patents DE 43 39 784 and DE 43 39 787

## **SPC-130 EM**

| Time Resolution (Jitter, FWHM / RMS, electrical)<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold<br>Zero Cross Adjust<br><b>nchronisation Channel (Stop Input)</b><br>Principle<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold _ | 6.6 ps / 2.5 ps<br>- 30 mV to - 1 V<br>400 ps<br>- 20 mV to - 500 mV<br>- 100 mV to + 100 mV<br>Constant Fraction Discriminator (CFD) | 820 fs<br>per<br>channel 2.5 ps rms                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Min. Input Pulse Width<br>Threshold<br>Zero Cross Adjust<br><b>nchronisation Channel (Stop Input)</b><br>Principle<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold                                                                                      | 400 ps<br>- 20 mV to - 500 mV<br>- 100 mV to + 100 mV                                                                                 | 820 fs<br>per 6.6 ps fwhm<br>2.5 ps rms                       |
| Threshold<br>Zero Cross Adjust<br>nchronisation Channel (Stop Input)<br>Principle<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold                                                                                                                       | - 20 mV to - 500 mV<br>- 100 mV to + 100 mV                                                                                           | per 25 ps rms                                                 |
| nchronisation Channel (Stop Input)<br>Principle<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold                                                                                                                                                         |                                                                                                                                       | per 25 ne rme                                                 |
| Principle<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold                                                                                                                                                                                               | Constant Fraction Discriminator (CFD)                                                                                                 | channel 2.0 p3 mis                                            |
| Principle<br>Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold                                                                                                                                                                                               | Constant Fraction Discriminator (CFD)                                                                                                 | channer                                                       |
| Optimum Input Voltage Range<br>Min. Input Pulse Width<br>Threshold                                                                                                                                                                                                            |                                                                                                                                       | + \                                                           |
| Threshold                                                                                                                                                                                                                                                                     | - 30 mV to - 1 V                                                                                                                      |                                                               |
|                                                                                                                                                                                                                                                                               | 400 ps                                                                                                                                |                                                               |
|                                                                                                                                                                                                                                                                               | - 20 mV to -500 mV                                                                                                                    |                                                               |
| Frequency Range                                                                                                                                                                                                                                                               | 0 to 200 MHz                                                                                                                          | I I                                                           |
| Frequency Divider<br>Zero Cross Adjust                                                                                                                                                                                                                                        | 1-2-4<br>-100 mV to + 100 mV                                                                                                          | / 1                                                           |
| ne-to-Amplitude Converter / ADC                                                                                                                                                                                                                                               |                                                                                                                                       | 1                                                             |
| Principle                                                                                                                                                                                                                                                                     | Ramp Generator / Biased Amplifier                                                                                                     |                                                               |
| TAC Range                                                                                                                                                                                                                                                                     | 50 ns to 5 us                                                                                                                         | 1                                                             |
| Biased Amplifier Gain                                                                                                                                                                                                                                                         | 1 to 15                                                                                                                               | / 1                                                           |
| Biased Amplifier Offset                                                                                                                                                                                                                                                       | 0 to 100% of TAC Range                                                                                                                | /                                                             |
| Time Range incl. Biased Amplifier                                                                                                                                                                                                                                             | 3.3 ns to 5 us                                                                                                                        |                                                               |
| min. Time / Channel<br>ADC Principle                                                                                                                                                                                                                                          | 813 fs<br>40 ns Flash ADC with Error Correction                                                                                       | ······                                                        |
| Diff. Nonlinearity                                                                                                                                                                                                                                                            | < 0.5% rms, typ. <1% peak-peak                                                                                                        |                                                               |
| ta Acquisition (Histogram Mode)                                                                                                                                                                                                                                               |                                                                                                                                       |                                                               |
| Method                                                                                                                                                                                                                                                                        | on-board 2-dimensional histogramming pro                                                                                              | cess                                                          |
| Online display                                                                                                                                                                                                                                                                | Decay curves (waveforms)                                                                                                              |                                                               |
| Dead Time                                                                                                                                                                                                                                                                     | 100 ns, independent of computer speed                                                                                                 | t                                                             |
| Saturated count rate<br>Sustained count rate                                                                                                                                                                                                                                  | 10 MHz<br>10 MHz                                                                                                                      |                                                               |
| Maximum useful count rate (50% loss)                                                                                                                                                                                                                                          | 5 MHz                                                                                                                                 |                                                               |
| max. Number of Curves in Memory                                                                                                                                                                                                                                               | 65536 16384 4096 1024                                                                                                                 | 256 64                                                        |
| Number of Time Channels / Curve                                                                                                                                                                                                                                               | 4 16 64 256                                                                                                                           | 1024 4096                                                     |
| max. Counts / Channel                                                                                                                                                                                                                                                         | 2 <sup>16</sup> -1                                                                                                                    |                                                               |
| Overflow Control                                                                                                                                                                                                                                                              | none / stop / repeat and correct                                                                                                      |                                                               |
| Collection Time                                                                                                                                                                                                                                                               | 0.1 us to 100,000 s                                                                                                                   |                                                               |
| Display Interval Time                                                                                                                                                                                                                                                         | 0.1 us to 100,000 s                                                                                                                   |                                                               |
| Repeat Time<br>Curve Control (Internal sequencing)                                                                                                                                                                                                                            | 0.1 us to 100,000 s<br>Programmable Hardware Sequencer                                                                                |                                                               |
| Curve Control (Routing)                                                                                                                                                                                                                                                       | 4 bit, TTL                                                                                                                            |                                                               |
| Count Enable Control                                                                                                                                                                                                                                                          | 1 bit, TTL                                                                                                                            |                                                               |
| External event markers                                                                                                                                                                                                                                                        | 4 bit, TTL                                                                                                                            |                                                               |
| Experiment Trigger                                                                                                                                                                                                                                                            | TTL                                                                                                                                   |                                                               |
| ta Acquisition (FIFO / Time-Tag Mode)<br>Method                                                                                                                                                                                                                               | Time and wavelength tagging of individual photons and con                                                                             | tipuous writing to disk                                       |
| Online display                                                                                                                                                                                                                                                                | Decay function, FCS, Cross-FCS, PCH, MCS                                                                                              |                                                               |
| FCS calculation                                                                                                                                                                                                                                                               | Multi-tau algorithm, online calculation and or                                                                                        |                                                               |
| Nunmer of counts of decay/waveform recording                                                                                                                                                                                                                                  | unlimited                                                                                                                             |                                                               |
| Dead Time                                                                                                                                                                                                                                                                     | 100 ns                                                                                                                                |                                                               |
| Saturated count rate, peak                                                                                                                                                                                                                                                    | 10 MHz                                                                                                                                |                                                               |
| Sustained count rate (bus transfer limited)                                                                                                                                                                                                                                   | typ. 4 MHz                                                                                                                            |                                                               |
| Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)                                                                                                                                                                                              | 12 / 12 / 4<br>2 M                                                                                                                    |                                                               |
| Macro Timer Resolution, internal clock                                                                                                                                                                                                                                        | 50ns, 12 bit, overflows marked by MTOF entry in                                                                                       | data stream                                                   |
| Macro Timer Resolution, clock from SYNC input                                                                                                                                                                                                                                 | 10ns to 100ns, 12 bit, overflows marked by MTOF entr                                                                                  |                                                               |
| Curve Control (external Routing)                                                                                                                                                                                                                                              | 4 bit TTL                                                                                                                             | ,<br>,                                                        |
| Count Enable Control                                                                                                                                                                                                                                                          | 1 bit TTL                                                                                                                             |                                                               |
| Experiment trigger                                                                                                                                                                                                                                                            | TTL                                                                                                                                   |                                                               |
| eration Environment                                                                                                                                                                                                                                                           | DC Doptium multi poro CDU recommenda                                                                                                  | od                                                            |
| Computer System<br>Bus Connectors                                                                                                                                                                                                                                             | PC Pentium, multi-core CPU recommend<br>PCI                                                                                           | 80                                                            |
| Used PCI Slots                                                                                                                                                                                                                                                                | 1                                                                                                                                     |                                                               |
| Power Consumption                                                                                                                                                                                                                                                             | approx. 45 W at +5V, 2 W at +12V                                                                                                      |                                                               |
| Dimensions                                                                                                                                                                                                                                                                    | 225 mm x 115 mm x 25 mm                                                                                                               |                                                               |
| lated Products                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                               |
| SPC-134 EM 4-channel TCSPC modules                                                                                                                                                                                                                                            | PMC-100 cooled PMT modules                                                                                                            | BDL-SMC picosecond diode lasers                               |
| SPC-150 TCSPC modules                                                                                                                                                                                                                                                         | HPM-100 GaAsP and GaAs hybrid detectors                                                                                               | BHL-600 picosecond diode lasers                               |
| SPC-154 4-channel TCSPC modules                                                                                                                                                                                                                                               | PML-SPEC and MW-FLIM multi-wavelength detectors                                                                                       | BHLP-700 picosecond diode lasers                              |
| SPC-830 TCSPC modules                                                                                                                                                                                                                                                         | R3809U MCP PMTs, with HVM-100 power supply module                                                                                     | DDG-200 laser multiplexing controll                           |
| Simple-Tau 130 compact TCSPC systems                                                                                                                                                                                                                                          | id-100 SPAD detector modules<br>DCC-100 detector controller                                                                           | GVD-100 scan controller                                       |
| Simple-Tau 150 compact TCSPC systems<br>Simple-Tau 134 compact 4-channel TCSPC systems                                                                                                                                                                                        | HRT-41, HRT-81, HRT-82 routing modules                                                                                                | Pin-photodiode modules for sync to<br>SPCImage decay analysis |
| Simple-Tau 154 compact 4-channel TCSPC systems                                                                                                                                                                                                                                | HFAC and HFAH preamplifiers                                                                                                           | Optispec decay analysis                                       |
| Simple-Tau 830 TCSPC compact systems                                                                                                                                                                                                                                          | A-PPI-D pulse inverters                                                                                                               |                                                               |
| DPC-230 16-channel ps photon correlator module                                                                                                                                                                                                                                | Detector / shutter assemblies                                                                                                         |                                                               |

W. Becker, Advanced time-correlated single photon counting techniques. Springer 2005. W. Becker, The bh TCSPC Handbook, 3rd edition. 466 pages, 503 references. Available on www.becker-hickl.com PML-16-C 16 channel detector head for time-correlated single photon counting. User handbook. Available on www.becker-hickl.com Becker & Hickl GmbH, SPCImage Data Analysis Software for Fluorescence Lifetime Imaging Microscopy, handbook. Available on www.becker-hickl.com BDL-375-SMC, BDL-405-SPC, BDL-440-SMC, BDL-473-SMC UV and blue picosecond diode lasers, handbook. Available on www.becker-hickl.com Please see also www.becker-hickl.com, 'Literature', 'Application notes'



## **TCSPC Module**

### **SPC-150**

### **TCSPC Module for Imaging Applications**

Picosecond resolution Ultra-high sensitivity Multi-detector / multi-wavelength capability High-speed on-board data acquisition Photon distribution and time-tag modes Image acquisition by synchronisation with ext. scanner Unlimited sequential recording of curves or images Imaging in histogram mode and in time-tag mode Works at any scan rate of CLSMs or MPLSMs Time channel width down to 813 fs Electrical time resolution down to 8 ps fwhm / 4 ps rms Reversed start/stop: Laser repetition rates up to 150 MHz Saturated count rate 10 MHz Total useful recorded count rate up to 5 MHz Dead time 100 ns

Multi-wavelength FLIM Double-exponential FLIM Fast-Acquisition FLIM Fast Sequential FLIM Single and double-exponential FRET imaging FCS, FCCS, FIDA, FILDA, BIFL FCS Imaging Transient fluorescence lifetime effects



**Ratio of Amplitudes** 







Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com www.becker-hickl.com US Representative: Boston Electronics Corp tcspc@boselec.com

Becker & Hickl GmbH

Nahmitzer Damm 30 12277 Berlin, Berlin

www.boselec.com UK Representative: Photonic Solutions PLC sales@psplc.com

www.psplc.com



Covered by patents DE 43 39 784 and DE 43 39 787

## SPC-150

Photon Channel Constant Fraction Discriminator (CFD) Principle Time Resolution (FWHM / RMS, electr.) 8 ps / 5 ps Optimal Input Voltage Range - 50 mV to - 1 V Min. Input Pulse Width 400 ps Threshold - 20 mV to - 500 mV Zero Cross Adjust - 100 mV to + 100 mV Synchronisation Channels Principle Constant Fraction Discriminator (CFD) Optimal Input Voltage Range - 50 mV to - 1 V Min. Input Pulse Width 400 ps - 20 mV to -500 mV Threshold Frequency Range 0 to 200 MHz Frequency Divider 1-2-4 Zero Cross Adjust -100 mV to + 100 mV Time-to-Amplitude Converters / ADCs Principle Ramp Generator / Biased Amplifier TAC Range 50 ns to 2 us Biased Amplifier Gain 1 to 15 Biased Amplifier Offset 0 to 100% of TAC Range Time Range incl. Biased Amplifier 3.3 ns to 2 us min. Time / Channel 813 fs 50 ns Flash ADC with Error Correction ADC Principle Diff. Nonlinearity < 0.5% rms, typ. <1% peak-peak Data Acquisition (Histogram Mode) on-board multi-dimensional histogramming process Method Dead Time 100ns, independent of computer speed Saturated Count Rate, per TCSPC channel / total 10 MHz / 40 MHz Useful count rate, per TCSPC channel / total 5 MHz / 20 MHz Channels / Pixel 4096 256 64 16 1024 4 1 max. Scanning Area per TCSPC channel 16x16 64x64 128 x 128 256x256 2<sup>16</sup>-1 512x512 1024x1024 2048x2048 max. Counts / Time Channel Overflow Control none / stop / repeat and correct Collection Time 0.1 us to 10000 s **Display Interval Time** 10ms to 1000 s Repeat Time 0.1 us to 1000 s Sequential Recording Programmable Hardware Sequencer Unlimited recording by memory swapping, in curve mode and scan mode pixel, line and frame clocks from scanning device Synchronisation with Scanning Count Enable Control 1 bit TTL Experiment Trigger TTI Data Acquisition (FIFO / Time-Tag Mode) Method Time-tagging of individual photons, continuous writing to disk Online Display Decay function, FCS, Cross-FCS, PCH, MCS traces Dead Time 100 ns Output Data Format (ADC / Macrotime / Routing) 12 bit ADC / 12 bit macro time / 4 bit routing Output Data Format for Scan Clock Markers (pxl, line, frame) 12 bit macro time / pxl, line, frame FIFO Buffer Capacity (photons and clock markers) 2 M 25 ns, 12 bit Macro Timer Resolution, internal clock Macro Timer Resolution, clock from SYNC input Curve Control (external Routing) 10 ns to 100 ns, 12 bit 4 bit TTI Count Enable Control 1 bit TTL Data Acquisition, FIFO / Time-Tag Imaging Mode Method Buildup of Images from Time-Tag data Online Display Images of all wavelength channels Synchronisation with scanner via Frame Clock, Line Clock, and Pixel Clock pulses Detector / WavelengthChannels 1 to 16 Time Channels / Pixel 1024 64 4096 256 16 max. Scan Area (one detector / wavelength channel) 128 x 128 256x256 512x512 1024x1024 2048x2048 **Operation Environment** Computer System PC Pentium **Bus Connectors** PCI Used PCI Slots 1 approx. 12 W from +5V, 0.7 W from +12V Total power Consumption 240 mm x 130 mm x 15 mm Dimensions Product Literature US Representative: W. Becker, The bh TCSPC Handbook. Available on www.becker-hickl.com. Boston Electronics Corp tcspc@boselec.com www.boselec.com Tel: (800) 347 5445 or (617) 566 3821 Designed and manufactured by Fax: (617) 731 0935



Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax +49 / 30 / 787 57 34 ihttp://www.becker-hickl.com info@becker-hickl.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com Tel: 0131 664 8122 Fax 0131 664 8144

## TCSPC Module

### **SPC-150N**

### Time-Correlated Single Photon Counting Imaging and FCS Module for Laser Scanning Microscopes

Improved version of SPC-150 TCSPC module Input discriminator bandwidth 4 GHz Reduced low-frequency timing wobble Multi-detector / multi-wavelength capability High-speed on-board data acquisition Photon distribution and parameter-tag modes Image acquisition by synchronisation with ext. scanner Imaging in histogram mode and in parameter-tag mode Megapixel image sizes Parallel operation of 2, 3 or 4 modules Works at any scan rate of CLSMs or MPLSMs Time channel width down to 813 fs Electrical time resolution (Jitter) 6.6 ps fwhm / 2.5 ps rms Reversed start/stop: Laser repetition rates up to 150 MHz Saturated count rate 10 MHz Total useful recorded count rate up to 5 MHz Dead time 100 ns

Standard fluorescence lifetime experiments Multi-wavelength lifetime experiments Recording of transient fluorescence lifetime effects Fluorescence lifetime imaging (FLIM) Multi-wavelength FLIM Fast-Acquisition FLIM, fast Sequential FLIM Fluorescence lifetime-transient scanning (FLITS) Combined fluorescence and phosphorescence lifetime imaging (PLIM) Single-molecule spectroscopy Anti-bunching experiments













 Becker & Hickl GmbH

 Nahmitzer Damn 30

 12277 Berlin, Berlin

 Tel.
 +49 / 30 / 787 56 32

 Fax.
 +49 / 30 / 787 57 34

 email:
 info@becker-hickl.com

 www.becker-hickl.com
 www.becker-hickl.com



US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com



## **SPC-150N**

| Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Constan                                                                                                                                                                                    | t Fraction Discrimi                                                                                                                                                                                                                                                           | nator (CFD)                                                                                                                                                                                                                                                                             | 500-<br>11                                                                                                                                                                                                                                                                                                                                         | RF stability                                                                                                                                         |                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Discriminator Input Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            | 4 GHz                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | ver 50 seconds                                                                                                                                       |                                                                      |
| Time Resolution (FWHM / RMS, electr.)<br>Variance in time of IRF maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                            | 6.6 ps / 2.5 ps<br><1 ps over 50 seco                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         | 42.0-                                                                                                                                                                                                                                                                                                                                              | .5s per recordin                                                                                                                                     | a                                                                    |
| Optimum Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            | - 30 mV to - 500 r                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         | ·                                                                                                                                                                                                                                                                                                                                                  | too per recordin                                                                                                                                     | 9                                                                    |
| Min. Input Pulse Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                            | 200 ps                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | 37.6-                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                      |
| Threshold<br>Zero Cross Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            | 0 to - 250 mV<br>- 100 mV to + 100                                                                                                                                                                                                                                            | ~~\/                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            | - 100 1110 10 + 100                                                                                                                                                                                                                                                           | mv                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Synchronisation Channels Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Constan                                                                                                                                                                                    | t Fraction Discrimi                                                                                                                                                                                                                                                           | nator (CFD)                                                                                                                                                                                                                                                                             | 31.4-3                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                      |
| Discriminator Input Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            | 4 GHz                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Optimal Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            | - 30 mV to - 500 r                                                                                                                                                                                                                                                            | nV                                                                                                                                                                                                                                                                                      | E 25.24                                                                                                                                                                                                                                                                                                                                            | 10 ps                                                                                                                                                |                                                                      |
| Min. Input Pulse Width<br>Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            | 200 ps<br>0 to -250 mV                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                  | 10 00                                                                                                                                                |                                                                      |
| Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            | 0 to 150 MHz                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | 19.1                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                      |
| Frequency Divider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            | 1-2-4                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         | 12.1                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      |                                                                      |
| Zero Cross Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            | -100 mV to + 100                                                                                                                                                                                                                                                              | mV                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Time-to-Amplitude Converters / ADCs<br>Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pomp                                                                                                                                                                                       | Generator / Biased                                                                                                                                                                                                                                                            | Amplifior                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                    | WHM 6.6 ps                                                                                                                                           |                                                                      |
| TAC Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ramp                                                                                                                                                                                       | 50 ns to 5 us                                                                                                                                                                                                                                                                 | Ampillei                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    | ariance in<br>RF maximum                                                                                                                             |                                                                      |
| Biased Amplifier Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            | 1 to 15                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | me 0.8 ps                                                                                                                                            |                                                                      |
| Biased Amplifier Offset<br>Time Range incl. Biased Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                          | to 100% of TAC R<br>3.3 ns to 5 us                                                                                                                                                                                                                                            | ange                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                    | ine 0.0 ps                                                                                                                                           |                                                                      |
| min. Time / Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            | 813 fs                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | 1 100                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                      |
| ADC Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 ns Fl                                                                                                                                                                                   | ash ADC with Erro                                                                                                                                                                                                                                                             | r Correction                                                                                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                | 2144 2148 2152 2156                                                                                                                                  | 2 160 2.164 2 168 2 172 2 176                                        |
| Diff. Nonlinearity, electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.5                                                                                                                                                                                      | % rms, typ. <1% p                                                                                                                                                                                                                                                             | eak-peak                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                    | -Ti                                                                                                                                                  | me (nii)                                                             |
| Data Acquisition (Histogram Mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Method<br>Dead Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | ard multi-dimensio                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Saturated Count Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | 100ns, independe                                                                                                                                                                                                                                                                        | ) MHz                                                                                                                                                                                                                                                                                                                                              | speed                                                                                                                                                |                                                                      |
| Useful count rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | MHz                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                      |
| Channels / Pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4096                                                                                                                                                                                       | 1024 256                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         | 16                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                    | 1                                                                    |
| max. Scanning Area<br>max. Counts / Time Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16x16                                                                                                                                                                                      | 64x64 128 x 1                                                                                                                                                                                                                                                                 | 28 256x25                                                                                                                                                                                                                                                                               | 6 512x512<br>2 <sup>16</sup> -1                                                                                                                                                                                                                                                                                                                    | 2 1024x1024                                                                                                                                          | 2048x2048                                                            |
| Overflow Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | epeat and corre                                                                                                                                                                                                                                                                                                                                    | ct                                                                                                                                                   |                                                                      |
| Collection Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | o 100,000 s                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                      |
| Display Interval Time<br>Repeat Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | o 100,000 s<br>o 100,000 s                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                                                                      |
| Sequential Recording                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Programmable Ha                                                                                                                                                                            | ardware Sequence                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | swapping, in curve                                                                                                                                   | mode and scan mode                                                   |
| Synchronisation with Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                          |                                                                                                                                                                                                                                                                               | line and frame cl                                                                                                                                                                                                                                                                       | ocks from scann                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Count Enable Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | bit TTL                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                      |
| Experiment Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | TTL                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |                                                                      |
| Data Acquisition (FIFO / Parameter-Tag Mode)<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                            | Parameter-taggi                                                                                                                                                                                                                                                               | ng of individual n                                                                                                                                                                                                                                                                      | hotons and cont                                                                                                                                                                                                                                                                                                                                    | inuous writing to d                                                                                                                                  | isk                                                                  |
| Online display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | function, FCS, CI                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      | IGK                                                                  |
| FCS calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            | Multi-t                                                                                                                                                                                                                                                                       | au algorithm, onli                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                    | nd online fit                                                                                                                                        |                                                                      |
| Number of counts of decay / waveform recording<br>Dead Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | limited<br>00 ns                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                      |
| Saturated count rate, peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | ) MHz                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                      |
| Sustained count rate (bus-transfer limited)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | 4 MHz                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                      |
| Output Data Format (ADC / Macrotime / Routing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | / 12 / 4<br>2 M                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| FIFO buffer Capacity (photons)<br>Macro Timer Resolution, internal clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                            | 50ns, 12 bi                                                                                                                                                                                                                                                                   | , overflows marke                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                    | rv in data stream                                                                                                                                    |                                                                      |
| Macro Timer Resolution, clock from SYNC input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    | entry in data stream                                                                                                                                 | am                                                                   |
| Curve Control (external Routing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | oit TTL                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                      |
| External event markers<br>Count Enable Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | it, TTL                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         | bit TTL<br>TTL                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                      |
| Experiment trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                      |
| Experiment trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | f images from tim                                                                                                                                                                                                                                                                       | TTL<br>e- and waveleng                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                      |
| Experiment trigger<br><b>ata Acquisition, FIFO / Parameter-Tag Imaging Mode</b><br>Method<br>Online display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                            | up to 8 in                                                                                                                                                                                                                                                                    | f images from tim<br>nages in different                                                                                                                                                                                                                                                 | TTL<br>e- and waveleng<br>time and wavele                                                                                                                                                                                                                                                                                                          | ength windows                                                                                                                                        |                                                                      |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            | up to 8 in                                                                                                                                                                                                                                                                    | f images from tim<br>nages in different<br>me Clock, Line C                                                                                                                                                                                                                             | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (                                                                                                                                                                                                                                                                                     | ength windows                                                                                                                                        |                                                                      |
| Experiment trigger<br>Jata Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            | up to 8 in                                                                                                                                                                                                                                                                    | f images from tim<br>nages in different<br>me Clock, Line C                                                                                                                                                                                                                             | TTL<br>e- and waveleng<br>time and wavele                                                                                                                                                                                                                                                                                                          | ength windows                                                                                                                                        |                                                                      |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                                                                                                                                                                                         | up to 8 in<br>via Fra<br>256                                                                                                                                                                                                                                                  | f images from tim<br>nages in different<br>me Clock, Line C<br>1<br>1024                                                                                                                                                                                                                | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (<br>to 16<br>4096                                                                                                                                                                                                                                                                    | ength windows<br>Clock pulses<br>4096                                                                                                                | 4096                                                                 |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4096 x 409                                                                                                                                                                                 | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048                                                                                                                                                                                                                                 | f images from tim<br>nages in different<br>me Clock, Line C<br>1<br>1024<br>1024 x 1024                                                                                                                                                                                                 | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (<br>to 16<br>4096<br>512 x 512                                                                                                                                                                                                                                                       | ength windows<br>Clock pulses<br>4096<br>256 x 256                                                                                                   | 128 x 128                                                            |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                            | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048                                                                                                                                                                                                                                 | f images from tim<br>nages in different<br>me Clock, Line C<br>1<br>1024                                                                                                                                                                                                                | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (<br>to 16<br>4096                                                                                                                                                                                                                                                                    | ength windows<br>Clock pulses<br>4096<br>256 x 256                                                                                                   |                                                                      |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>Dperation Environment<br>Computer System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4096 x 409<br>1024 x 102                                                                                                                                                                   | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512                                                                                                                                                                                                                  | f images from tim<br>nages in different<br>me Clock, Line C<br>1<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a                                                                                                                                                                 | TTL<br>e- and waveleng<br>time and wavelen<br>tock, and Pixel (<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat                                                                                                                                                                                                                     | ength windows<br>Clock pulses<br>4096<br>256 x 256                                                                                                   | 128 x 128<br>128 x 128                                               |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>Depration Environment<br>Computer System<br>Bus Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4096 x 409<br>1024 x 102                                                                                                                                                                   | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512                                                                                                                                                                                                                  | f images from tim<br>nages in different<br>me Clock, Line C<br>1<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a                                                                                                                                                                 | TTL<br>a- and waveleng<br>time and wavele<br>toock, and Pixel (<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI                                                                                                                                                                                                              | 4096<br>256 x 256<br>128 x 128                                                                                                                       | 128 x 128<br>128 x 128                                               |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>Dperation Environment<br>Computer System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4096 x 409<br>1024 x 102                                                                                                                                                                   | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co                                                                                                                                                                                           | f images from tim<br>nages in different<br>me Clock, Line C<br>1<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a                                                                                                                                                                 | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1                                                                                                                                                                                                          | ength windows<br>2lock pulses<br>256 x 256<br>128 x 128<br>ing system recomm                                                                         | 128 x 128<br>128 x 128                                               |
| Experiment trigger<br>bata Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>Operation Environment<br>Computer System<br>Bus Connectors<br>Used PCI Slots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4096 x 409<br>1024 x 102                                                                                                                                                                   | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co                                                                                                                                                                                           | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>pre, >8GB RAM a<br>pprox. 12 W from                                                                                                                                                  | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1                                                                                                                                                                                                          | ength windows<br>2lock pulses<br>256 x 256<br>128 x 128<br>ing system recomm                                                                         | 128 x 128<br>128 x 128                                               |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>Operation Environment<br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4096 x 409<br>1024 x 102                                                                                                                                                                   | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co                                                                                                                                                                                           | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>pre, >8GB RAM a<br>pprox. 12 W from                                                                                                                                                  | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (<br>to 16<br>4096<br>512 × 512<br>128 × 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W fron                                                                                                                                                                                       | ength windows<br>2lock pulses<br>256 x 256<br>128 x 128<br>ing system recomm                                                                         | 128 x 128<br>128 x 128                                               |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channel 16 detector channels (MW FLIM detector) Deration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Related Products SPC-150 TCSPC modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4096 x 409<br>1024 x 102<br>Pt                                                                                                                                                             | up to 8 ir<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co<br>a<br>GaAsP and GaAs                                                                                                                                                                    | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors                                                                                                                | TTL<br>=- and waveleng<br>time and wavele<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm                                                                                                                                                                      | Angth windows<br>2lock pulses<br>4096<br>256 x 256<br>128 x 128<br>ing system recomm<br>n +12V<br>DCC-100 dete                                       | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channels (MW FLIM detector) Deration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Related Products SPC-150 TCSPC modules SPC-154 4-channel TCSPC modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPE                                                                                                                                       | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co<br>al<br>GaAsP and GaAs<br>C and MW-FLIM m                                                                                                                                                | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d                                                                                           | TTL<br>=- and waveleng<br>time and wavele<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm                                                                                                                                                                      | ngth windows<br>clock pulses<br>4096<br>256 x 256<br>128 x 128<br>ing system recomm<br>n +12V                                                        | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channels (MW FLIM detector) Detector channels (MW FLIM detector) Detector channels (MW FLIM detector) Detector channels Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Celated Products SPC-150 TCSPC modules SPC-154 4-channel TCSPC modules Simple-Tau compact TCSPC systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPE<br>PMC-100                                                                                                                            | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co<br>a<br>GaAsP and GaAs<br>C and MW-FLIM m<br>cooled PMT modu                                                                                                                              | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les                                                                                    | TTL<br>=- and waveleng<br>time and wavele<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm                                                                                                                                                                      | Angth windows<br>2lock pulses<br>4096<br>256 x 256<br>128 x 128<br>ing system recomm<br>n +12V<br>DCC-100 dete                                       | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger bata Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channels (MW FLIM detector) peration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions telated Products SPC-150 TCSPC modules SPC-154 4-channel TCSPC modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPE<br>PMC-100                                                                                                                            | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co<br>al<br>GaAsP and GaAs<br>C and MW-FLIM m                                                                                                                                                | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les<br>es                                                                              | TTL<br>=- and waveleng<br>time and wavele<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm                                                                                                                                                                      | Angth windows<br>2lock pulses<br>4096<br>256 x 256<br>128 x 128<br>ing system recomm<br>n +12V<br>DCC-100 dete                                       | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger<br>Data Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method<br>Online display<br>Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>Deration Environment<br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br>Related Products<br>SPC-150 TCSPC modules<br>SPC-150 TCSPC modules<br>Simple-Tau compact TCSPC systems<br>FLIM systems for laser scanning microscopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPE<br>PMC-100                                                                                                                            | up to 8 in<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co<br>a<br>GaAsP and GaAs<br>C and MW-FLIM m<br>cooled PMT modu                                                                                                                              | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les<br>es                                                                              | TTL<br>=- and waveleng<br>time and waveleng<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm<br>etectors                                                                                                                                                        | Angth windows<br>2lock pulses<br>4096<br>256 x 256<br>128 x 128<br>ing system recomm<br>n +12V<br>DCC-100 dete                                       | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channels (MW FLIM detector) Deration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Related Products SPC-150 TCSPC modules Simple-Tau compact TCSPC systems FLIM systems for laser scanning microscopes DCS-120 confocal scanning FLIM system Related Literature W. Becker, Advanced time-correlated single photon count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4096 x 409<br>1024 x 102<br>Pri<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 SP.                                                                                                             | up to 8 ir<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-cu<br>al<br>GaAsP and GaAs<br>C and MW-FLIM m<br>Cooled PMT modu<br>AD detector modul                                                                                                        | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les<br>es<br>BDL-SMN p<br>e contact bh for a                                           | TTL<br>e- and waveleng<br>time and waveleng<br>time and waveleng<br>lock, and Pixel C<br>to 16<br>4096<br>512 x 512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm<br>etectors<br>os diode lasers<br>vailability.                                                                                                | Angth windows<br>200ck pulses<br>4096<br>256 x 256<br>128 x 128<br>ing system recomm<br>n +12V<br>DCC-100 dete<br>GVD-120 scar                       | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channel 16 detector channel (MW FLIM detector) Deration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Pelated Products SPC-150 TCSPC modules SPC-154 4-channel TCSPC systems FLIM system for laser scanning microscopes DCS-120 confocal scanning FLIM system Paleker, The bh TCSPC Handbook, 5th edition. 690 pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPEr<br>PMC-100<br>id-100 SP<br>ing techniques. Sp<br>ges, 823 reference                                                                  | up to 8 ir<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-cr<br>al<br>GaAsP and GaAs<br>C and MW-FLIM m<br>cooled PMT modu<br>AD detector modul<br>ringer 2005. Pleas<br>s. Available on w                                                             | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les<br>es<br>BDL-SMN<br>e contact bh for a<br>w.becker-hickl.cc                        | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (<br>to 16<br>4096<br>512 x512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm<br>etectors<br>os diode lasers<br>vailability.<br>m. Contact bh fi                                                                                                    | Augh windows<br>Auge<br>256 x 256<br>128 x 128<br>ang system recomm<br>n +12V<br>DCC-100 dete<br>GVD-120 scar<br>pr printed copies.                  | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channels (MW FLIM detector) Deration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Related Products Simple-Tau compact TCSPC modules Simple-Tau compact TCSPC modules Simple-Tau compact TCSPC systems FLIM systems for laser scanning microscopes DCS-120 confocal scanning FLIM system Related Literature W. Becker, Advanced time-correlated single photon count Count Counter M. Becker, Advanced time-correlated single photon count Counter C | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 SP.<br>ing techniques. Sp<br>ges, 823 reference<br>gle photon counti                                             | up to 8 ir<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-co<br>al<br>GaAsP and GaAs<br>C and MW-FLIM m<br>cooled PMT modu<br>AD detector modul<br>ringer 2005. Pleas<br>s. Available on wm<br>ng. User handboof                                       | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les<br>es<br>BDL-SMN<br>e contact bh for a<br>w.becker-hickl.cc                        | TTL<br>e- and waveleng<br>time and wavele<br>lock, and Pixel (<br>to 16<br>4096<br>512 x512<br>128 x 128<br>nd 64 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm<br>etectors<br>os diode lasers<br>vailability.<br>m. Contact bh fi                                                                                                    | Augh windows<br>Auge<br>256 x 256<br>128 x 128<br>ang system recomm<br>n +12V<br>DCC-100 dete<br>GVD-120 scar<br>pr printed copies.                  | 128 x 128<br>128 x 128<br>nended<br>actor controller                 |
| Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Method Online display Synchronisation with scanner Detector / Wavelength Channels Image size in FIFO Imaging Mode (64 bit software) time channels / pixel 1 detector channel 16 detector channel (MW FLIM detector) Deration Environment Computer System Bus Connectors Used PCI Slots Total power Consumption Dimensions Pelated Products SPC-150 TCSPC modules SPC-154 4-channel TCSPC systems FLIM system for laser scanning microscopes DCS-120 confocal scanning FLIM system Paleker, The bh TCSPC Handbook, 5th edition. 690 pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4096 x 409<br>1024 x 102<br>Pr<br>HPM-100<br>PML-SPEr<br>PMC-100<br>id-100 SP<br>ing techniques. Sp<br>ges, 823 reference<br>ngle photon counti<br>vailable on ww.be<br>ser scanning micro | up to 8 ir<br>via Fra<br>256<br>6 2048 x 2048<br>4 512 x 512<br>C Pentium, multi-cr<br>2<br>GaAsP and GaAs<br>C and MW-FLIM m<br>cooled PMT modu<br>AD detector modul<br>ringer 2005. Pleas<br>s. Available on w<br>ng. User handbook<br>icker-hickl.com<br>sscopes, handbook | f images from tim<br>nages in different<br>me Clock, Line C<br>1024<br>1024 x 1024<br>256 x 256<br>ore, >8GB RAM a<br>oprox. 12 W from<br>240 mm x 1<br>hybrid detectors<br>ulti-wavelength d<br>les<br>es<br>BDL-SMN j<br>e contact bh for a<br>w.becker-hickl.cc<br>c. Available on w | TTL<br>e- and waveleng<br>time and waveleng<br>time and waveleng<br>to the and waveleng<br>to the and waveleng<br>to the and waveleng<br>512 x 512<br>128 x 128<br>128 x 128<br>148 x 128<br>164 bit operat<br>PCI<br>1<br>+5V, 0.7 W from<br>30 mm x 15 mm<br>etectors<br>bis diode lasers<br>vailability.<br>m. Contact bh fi<br>w.becker-hickl. | Aught windows<br>Aught windows<br>256 x 256<br>128 x 128<br>ang system recomm<br>a +12V<br>DCC-100 dete<br>GVD-120 scar<br>pr printed copies.<br>com | 128 x 128<br>128 x 128<br>hended<br>ector controller<br>h controller |

More than 20 years experience in multi-dimensional TCSPC. More than 1500 TCSPC systems worldwide.

## SPC-150NX

### **TCSPC / FLIM Module**

### **Time-Correlated Single Photon Counting Module for Ultra-Fast Detectors**

High-resolution version of SPC-150N TCSPC module Improved resolution for ultra-fast detectors Internal timing jitter 1.6 ps rms (3.5 ps fwhm) Minimum time channel width 407 fs Input discriminator bandwidth 4 GHz Sub-ps low-frequency timing wobble Photon distribution and parameter-tag modes Multi-detector / multi-wavelength capability FLIM by bh Megapixel Technology Mosaic FLIM mode Multiscaler imaging mode Parallel operation of 2, 3 or 4 modules Reversed start/stop: Laser repetition rates up to 150 MHz Dead time 100 ns Saturated count rate 10 MHz

Ultra-fast fluorescence lifetime experiments Anti-bunching experiments Multi-wavelength lifetime experiments Recording of transient fluorescence lifetime effects Single-wavelength FLIM, multi-wavelength FLIM Fast-acquisition FLIM, time-series FLIM Mosaic FLIM, lateral, longitudinal, temporal mosaics FLITS Simultaneous PLIM and FLIM Double-exponential FRET imaging Recording of Ca<sup>2+</sup> transients fNIRS and NIRS experiments Single-molecule spectroscopy FCS, FCCS, PCH









Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com www.becker-hickl.com



More than 20 years experience in multi-dimensional TCSPC. More than 1500 TCSPC systems worldwide.

### SPC-150NX

## **TCSPC / FLIM Module**

Photon Channel Constant Fraction Discriminator (CFD) Principle Discriminator Input Bandwidth 4 GHz 3.3 ps / 1.6 ps <1 ps over 50 seconds - 30 mV to - 500 mV Time Resolution (FWHM / RMS, electr.) Variance in time of IRF maximum Optimum Input Voltage Range Min. Input Pulse Width 200 ps 0 to - 250 mV - 100 mV to + 100 mV Threshold Zero Cross Adjust Synchronisation Channels Constant Fraction Discriminator (CFD) Principle Discriminator Input Bandwidth Optimal Input Voltage Range 4 GHz - 30 mV to - 500 mV Min. Input Pulse Width Threshold 200 ps 0 to -250 mV Frequency Range SYNC Frequency Divide 0 to 150 MHz 1 - 2 - 4 -100 mV to + 100 mV Zero Cross Adjust Time-to-Amplitude Converters / ADCs Ramp Generator / Biased Amplifier Principle TAC Range 25 ns to 2.5 us Biased Amplifier Gain Biased Amplifier Offset 1 to 15 0 to 50% of TAC Range Time Range incl. Biased Amplifier min. Time / Channel ADC Principle 1.67 ns to 2.5 us 407 fs 50 ns Flash ADC with Error Correction Diff. Nonlinearity, electrical < 0.5% rms, typ. <1% peak-peak Data Acquisition (Histogram Modes) Method on-board multi-dimensional hardware histogramming process 100 ns, independent of computer speed Dead Time 10 MHz 5 MHz 2<sup>16</sup>-1 none / stop / repeat and correct Saturated Count Rate Useful count rate max. Counts / Time Channel (counting depth) Overflow Control 0.1 us to 100,000 s 0.1 us to 100,000 s Collection Time Display Interval Time 0.1 us to 100.000 s Repeat Time Sequential Recording Synchronisation with Scanning Programmable Hardware Sequencer, unlimited recording by memory swapping, in curve mode and scan mode pixel, line and frame clocks from scanning device Routing 7 bit TTL Experiment Trigger TTL Data Acquisition (FIFO / Parameter-Tag Mode) Parameter-tagging of individual photons and continuous writing to disk Method Online display Decay function, FCS, Cross-FCS, PCH, MCS traces Multi-tau algorithm, online calculation and online fit FCS calculation unlimited 100 ns Number of counts of decay / waveform recording Dead Time Saturated count rate, peak 10 MHz Sustained count rate (bus-transfer limited) typ. 4 MHz max. counts / time cChannel (counting depth) Output Data Format (ADC / Macrotime / Routing) unlimited 12 / 12 / 4 bit 2.10<sup>6</sup> FIFO buffer Capacity (photons) Macro Timer Resolution, internal clock 50 ns, 12 bit, overflows marked by MTOF entry in data stream 10 ns to 100 ns, 12 bit, overflows marked by MTOF entry in data stream Macro Timer Resolution, clock from SYNC input 4 bit TTL Routing External event markers 4 bit. TTL TTL Experiment trigger Data Acquisition, FIFO / Parameter-Tag Imaging Mode Buildup of images from time- and wavelength tagged data up to 8 images in different time and wavelength windows Method Online display Synchronisation with scanner Detector / Wavelength Channels via Frame Clock, Line Clock, and Pixel Clock pulses 1 to 16 Image resolution, 64-bit SPCM software No of time channels 64 256 1024 4096 No. of pixels, 1 detector channel No. of pixels, 16 detector channels 4096 x 4096 1024 x 1024 512 x 512 128 x 128 2048 x 2048 1024 x 1024 512 x 512 256 x 256 **Operation Environment** Computer System PC Pentium, multi-core, >8GB RAM and 64 bit operating system recommended Bus Connectors PCI Used PCI Slots approx. 12 W from +5V, 0.7 W from +12V Total power Consumption Dimensions 240 mm x 130 mm x 15 mm Related Products HPM-100 GaAsP and GaAs hybrid detectors SPC-150N TCSPC modules DCC-100 detector controlle Simple-Tau 150 compact TCSPC systems Simple-Tau 154 compact 4-channel TCSPC systems PML-SPEC and MW-FLIM multi-wavelength detectors BDL-SMN ps diode lasers PMC-100 cooled PMT modules BDS-SM, -SMY, -MM picosecond diode lasers DCS-120 confocal scanning FLIM system id-100 SPAD detector modules

#### Related Literature

World Record in TCSPC Time Resolution: Combination of bh SPC-150NX with SCONTEL NbN Detector yields 17.8 ps FWHM. Application note, please see www.becker-hickl.com W. Becker, Advanced time-correlated single photon counting techniques. Springer 2005. Please contact bh for availability. W. Becker, The bh TCSPC Handbook, 6th edition (2015). Available on www.becker-hickl.com. Contact bh for printed copies.

**International Sales Representatives** 



US: **Boston Electronics Corp** tcspc@boselec.com www.boselec.com



www.psplc.com



Japan: Tokyo Instruments Inc. sales@tokyoinst.co.jp www.tokyoinst.co.jp Dyna Sense

China: DynaSense Photonics Co. Ltd. info@dyna-sense.com www.dyna-sense.com

## **TCSPC Module**

## **SPC-160**

### **Time-Correlated Single Photon Counting Imaging and FCS Module for Laser Scanning Microscopes**

Input discriminator bandwidth 4 GHz Reduced low-frequency timing wobble Multi-detector / multi-wavelength capability Photon distribution and parameter-tag modes FLIM with galvanometer and resonance scanners FLIM in histogram mode and in parameter-tag mode Mosaic FLIM mode Multiscaler imaging mode Parallel Counter channel for FLIM intensities Megapixel image sizes Parallel operation of 2, 3 or 4 modules Time channel width down to 813 fs Electrical time resolution (Jitter) 2.5 ps rms Laser repetition rates up to 150 MHz Saturated count rate 12.5 MHz Total useful recorded count rate up to 6.25 MHz Dead time 80 ns

Standard fluorescence lifetime experiments Multi-wavelength lifetime experiments Fluorescence lifetime imaging (FLIM) Multi-wavelength FLIM Fast-Acquisition FLIM, fast Sequential FLIM Fluorescence lifetime-transient scanning (FLITS) **Combined FLIM and PLIM** Single-molecule spectroscopy **Online FCS** Anti-bunching experiments







Becker & Hickl GmbH 
 Nahmitzer Damm 30

 12277 Berlin, Berlin

 Tel.
 +49 / 30 / 787 56 32

 Fax.
 +49 / 30 / 787 57 34
 email: info@becker-hickl.com www.becker-hickl.com

US Representative: Boston Electronics Corp tcspc@boselec.com . vww.boselec.com



UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com



## **SPC-160**

| Photon Channel<br>Principle<br>Discriminator Input Bandwidth<br>Time Resolution (FWHM / RMS, electr.)<br>Variance in time of IRF maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|
| Discriminator Input Bandwidth<br>Time Resolution (FWHM / RMS, electr.)<br>Variance in time of IRF maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Consta                                                                                                                                                                                                                                                              | nt Erootic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Diagriminator                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                         |
| Time Resolution (FWHM / RMS, electr.)<br>Variance in time of IRF maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Consta                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Discriminator<br>4 GHz                                                                                                                                                                               | (CFD)                                                                                                                                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | IRF stability           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | os / 2.5 ps                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | over 50 s               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er 50 seconds                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                         | 43.8+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 0.5s per                |
| Optimum Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / to - 500 mV                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | recording               |
| Min. Input Pulse Width<br>Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200 ps<br>- 250 mV                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                         | 37.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                         |
| Zero Cross Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / to + 100 mV                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| ynchronisation Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Consta                                                                                                                                                                                                                                                              | nt Fractio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Discriminator                                                                                                                                                                                        | (CFD)                                                                                                                                                          |                                                                                                         | 31.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                         |
| Discriminator Input Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 GHz                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Optimal Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / to - 500 mV                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                         | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 10 ps                   |
| Min. Input Pulse Width<br>Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200 ps<br>-250 mV                                                                                                                                                                                      |                                                                                                                                                                |                                                                                                         | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                         |
| Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 MHz                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                         | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                         |
| Frequency Divider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-2-4                                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                         | 19.1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                         |
| Zero Cross Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     | -100 m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / to + 100 mV                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | FWHM 6.6 ps             |
| ime-to-Amplitude Converters / ADCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         | and the second se |                                  | Variance in             |
| Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ramp                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or / Biased Amp                                                                                                                                                                                        | ifier                                                                                                                                                          |                                                                                                         | 12.9-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | IRF maximum             |
| TAC Range<br>Biased Amplifier Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns to 5 us<br>I to 15                                                                                                                                                                                  |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | time 0.8 ps             |
| Biased Amplifier Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of TAC Range                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                         | 6.7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                         |
| Time Range incl. Biased Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns to 5 us                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                         | 22/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                         |
| min. Time / Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 813 fs                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| ADC Principle<br>Diff. Nonlinearity, electrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C with Error Corre<br>yp. <1% peak-pe                                                                                                                                                                  |                                                                                                                                                                |                                                                                                         | 2140 2144 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 2152 2166 2160                | 2 164 2 166 2 172 2 176 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.:                                                                                                                                                                                                                                                               | 270 I IIIS, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yp. <1 /₀ peak-pe                                                                                                                                                                                      | an                                                                                                                                                             |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Timut (ins                       | 1                       |
| ata Acquisition (Histogram Mode)<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on-board mi                                                                                                                                                                                            | Iti-dimensional I                                                                                                                                              | nietoarommina                                                                                           | DIOCOSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                         |
| Dead Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | independent of                                                                                                                                                 |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Saturated Count Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 12.5 Mł                                                                                                                                                        |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Useful count rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 6.25 MH                                                                                                                                                        | Ηz                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Channels / Pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4096                                                                                                                                                                                                                                                                | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 256                                                                                                                                                                                                    | 64                                                                                                                                                             | 16<br>510×510                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                | 49                      |
| max. Scanning Area<br>max. Counts / Time Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16x16                                                                                                                                                                                                                                                               | 64x64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128 x 128                                                                                                                                                                                              | 256x256<br>2 <sup>16</sup> -1                                                                                                                                  | 512x512                                                                                                 | 1024x1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2048x20                          | 40                      |
| Overflow Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | no                                                                                                                                                                                                     | ne / stop / repea                                                                                                                                              | at and correct                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Collection Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 0.1 us to 100                                                                                                                                                  | 0,000 s                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Display Interval Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 0.1 us to 100                                                                                                                                                  |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Repeat Time<br>Sequential Recording                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Programmable H                                                                                                                                                                                                                                                      | lardwara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sequencer unlir                                                                                                                                                                                        | 0.1 us to 100                                                                                                                                                  |                                                                                                         | apping in curv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a mode and sca                   | mode                    |
| Synchronisation with Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i iogrammable i                                                                                                                                                                                                                                                     | aluwale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                        | nd frame clocks                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e mode and sca                   | THIODE                  |
| Count Enable Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                      | 1 bit TT                                                                                                                                                       |                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                         |
| Experiment Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | TTL                                                                                                                                                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| ata Acquisition (FIFO / Parameter-Tag Mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     | Parar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | neter-tagging of i                                                                                                                                                                                     |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lisk                             |                         |
| Online display<br>FCS calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | on, FCS, Cross-<br>orithm, online ca                                                                                                                           |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Number of counts of decay / waveform recording                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wun-tau alg                                                                                                                                                                                            | unlimite                                                                                                                                                       |                                                                                                         | onine ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                         |
| Dead Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 100 ns                                                                                                                                                         |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Saturated count rate, peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 10 MH                                                                                                                                                          |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Sustained count rate (bus-transfer limited)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | typ. 4 M                                                                                                                                                       |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 12 / 12 /<br>2 M                                                                                                                                               | 4                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Macro Timer Resolution, internal clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0ns, 12 bit, over                                                                                                                                                                                      |                                                                                                                                                                | MTOF entry                                                                                              | in data stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                         |
| Macro Timer Resolution, clock from SYNC input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to 100ns, 12 bit,                                                                                                                                                                                      |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | am                               |                         |
| Curve Control (external Routing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 4 bit T1                                                                                                                                                       |                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                         |
| External event markers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 4 bit, T                                                                                                                                                       |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Count Enable Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 1 bit TT<br>TTL                                                                                                                                                | L                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Experiment trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 116                                                                                                                                                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| ata Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Buildup of imag                                                                                                                                                                                        | es from time- on                                                                                                                                               | d wavelength                                                                                            | tagged data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                         |
| Online display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | up to 8 images                                                                                                                                                                                         |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | ock, Line Clock,                                                                                                                                               | and Pixel Clo                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Synchronisation with scanner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 1 to 16                                                                                                                                                        | 6                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 256                                                                                                                                                                                                    | 1024                                                                                                                                                           | 4096                                                                                                    | 4096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4096                             |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         | 4096<br>256 x 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4096<br>128 x 128                |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / jixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64<br>4096 x 40                                                                                                                                                                                                                                                     | 96 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |                                                                                                                                                                |                                                                                                         | 128 x 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 128 x 128                        |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        | 6 x 256 12                                                                                                                                                     | 8 x 128                                                                                                 | 120 X 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>peration Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              | 24 5´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 512 25                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / jixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br>peration Environment<br>Computer System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              | 24 5´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                        | GB RAM and 6                                                                                                                                                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mended                           |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channels<br>(MW FLIM detector)<br>peration Environment<br>Computer System<br>Bus Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              | 24 5´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 512 25                                                                                                                                                                                             | GB RAM and 6<br>PCI                                                                                                                                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mended                           |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channel<br>16 detector channels (MW FLIM detector)<br>peration Environment<br>Computer System<br>Bus Connectors<br>Used PCI Slots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              | 24 5´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 512 25<br>m, multi-core, >8                                                                                                                                                                        | GB RAM and 6<br>PCI<br>1                                                                                                                                       | 4 bit operating                                                                                         | system recomi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mended                           |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channels<br>16 detector channels (MW FLIM detector)<br>peration Environment<br>Computer System<br>Bus Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              | 24 5´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 512 25<br>m, multi-core, >8<br>approx.                                                                                                                                                             | GB RAM and 6<br>PCI                                                                                                                                            | 4 bit operating<br>, 0.7 W from +                                                                       | system recomi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nended                           |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4096 x 40<br>1024 x 10                                                                                                                                                                                                                                              | 24 5´                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 512 25<br>m, multi-core, >8<br>approx.                                                                                                                                                             | GB RAM and 6<br>PCI<br>1<br>12 W from +5V                                                                                                                      | 4 bit operating<br>, 0.7 W from +                                                                       | system recomi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nended                           |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channel<br>16 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4096 x 40<br>1024 x 10<br>F<br>HPM-100                                                                                                                                                                                                                              | 24 5 <sup>°</sup><br>PC Pentiu<br>) GaAsP ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 x 512 25<br>m, multi-core, >8<br>approx.                                                                                                                                                             | GB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>312 mm x 130 m<br>detectors                                                                                       | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm                                                          | system recom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nended<br>ector controller       |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-150 and SPC-150N TCSPC modules                                                                                                                                                                                                                                                                                                                                                                                                                          | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE                                                                                                                                                                                                                   | 24 5 <sup>°</sup><br>PC Pentiu<br>) GaAsP :<br>EC and M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa                                                                                                                       | GB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>312 mm x 130 m<br>detectors                                                                                       | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm                                                          | 9 system recomi<br>12V<br>DCC-100 det<br>GVD-120 sca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ector controller<br>n controller |                         |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channels<br>(MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>Simple-Tau compact TCSPC systems                                                                                                                                                                                                                                                                                                                                                                                     | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100                                                                                                                                                                                                        | 24 5 <sup>4</sup><br>PC Pentiu<br>) GaAsP ;<br>EC and M<br>) cooled F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>PMT modules                                                                                                        | GB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>312 mm x 130 m<br>detectors                                                                                       | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm                                                          | 9 system recomi<br>12V<br>DCC-100 det<br>GVD-120 sca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ector controller                 | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channels (MW FLIM detector)<br>peration Environment<br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br>elated Products<br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>Simple-Tau compact TCSPC modules<br>FLIM systems for laser scanning microscopes                                                                                                                                                                                                                                                                                                                                                       | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 ST                                                                                                                                                                                           | 24 5<br>PC Pentiu<br>) GaAsP :<br>EC and M<br>) cooled F<br>PAD dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>2MT modules<br>cor modules                                                                                         | GB RAM and 6<br>PCI<br>1<br>2 W from +5V<br>312 mm x 130 m<br>detectors<br>avelength detect                                                                    | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm                                                          | 9 system recomi<br>12V<br>DCC-100 det<br>GVD-120 sca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channels (MW FLIM detector)<br>peration Environment<br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br>elated Products<br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>Simple-Tau compact TCSPC modules<br>FLIM systems for laser scanning microscopes<br>DCS-120 confocal scanning FLIM system                                                                                                                                                                                                                                                                                                              | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 ST                                                                                                                                                                                           | 24 5<br>PC Pentiu<br>) GaAsP :<br>EC and M<br>) cooled F<br>PAD dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>PMT modules                                                                                                        | GB RAM and 6<br>PCI<br>1<br>2 W from +5V<br>312 mm x 130 m<br>detectors<br>avelength detect                                                                    | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm                                                          | 9 system recomi<br>12V<br>DCC-100 det<br>GVD-120 sca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>Simple-Tau compact TCSPC systems<br>FLIM systems for laser scanning microscopes<br>DCS-120 confocal scanning FLIM system<br><b>elated Literature</b>                                                                                                                                                                                                                                                                     | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 SF<br>BDL-SMI                                                                                                                                                                                | 24 5<br>PC Pentiu<br>C Pentiu | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>MT modules<br>ctor modules<br>S ps diode laser                                                                     | IGB RAM and 6<br>PCI<br>12 W from +5V<br>312 mm x 130 m<br>detectors<br>avelength detect                                                                       | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm<br>tors                                                  | 9 system recomi<br>12V<br>DCC-100 det<br>GVD-120 sca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channels (MW FLIM detector)<br><b>operation Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>telated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-124 channel TCSPC modules<br>SPC-120 confocal scanning microscopes<br>DCS-120 confocal scanning FLIM system<br><b>telated Literature</b><br>W. Becker, Advanced time-correlated single photon co                                                                                                                                                                                                                  | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-3PE<br>PMC-100<br>id-100 SF<br>BDL-SMt<br>punting techniques. Sj                                                                                                                                                      | 24 5<br>PC Pentiu<br>PG C Pentiu<br>C C and M<br>C cooled F<br>PAD dete<br>N and BD<br>pringer 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>PMT modules<br>ctor modules<br>S ps diode lasen<br>005. Please cont                                                | IGB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>112 mm x 130 m<br>detectors<br>avelength detect<br>s<br>act bh for availa                                        | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm<br>tors<br>bility.                                       | DCC-100 det<br>GVD-120 sca<br>DB-32 USB-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>Simple-Tau compact TCSPC systems<br>FLIM systems for laser scanning microscopes<br>DCS-120 confocal scanning FLIM system<br><b>elated Literature</b>                                                                                                                                                                                                                                                                     | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 ST<br>BDL-SMf<br>punting techniques. Sj<br>pages, 823 reference                                                                                                                              | 24 5<br>PC Pentiu<br>C Pentiu<br>C GaAsP :<br>C and M<br>C cooled F<br>PAD dete<br>V and BD<br>pringer 2<br>es. Availa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 x 512 25<br>m, multi-core, >5<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>MT modules<br>S ps diode laser<br>205. Please cont<br>able on www.bec                                              | IGB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>312 mm x 130 m<br>detectors<br>avelength detect<br>s<br>act bh for availa<br>ker-hickl.com. C                    | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm<br>ors<br>bility.<br>contact bh for                      | 12V<br>DCC-100 det<br>GVD-120 sca<br>DB-32 USB-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-124 compact TCSPC systems<br>FLIM systems for laser scanning microscopes<br>DCS-120 confocal scanning FLIM system<br><b>elated Literature</b><br>W. Becker, Advanced time-correlated single photon co<br>W. Becker, The bh TCSPC Handbook, 5th edition. 690<br>PML-16-C 16 channel detector head for time-correlated<br>DCS-120 Confocal Scanning FLIM Systems, handbook         | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-3PE<br>PMC-100<br>id-100 Sf<br>BDL-SMf<br>bunting techniques. Sj<br>pages, 823 referenc<br>d single photon count<br>c. Available on www.t                                                                             | 24 5<br>24 5<br>26 Pentiu<br>9 GaAsP<br>25 and M<br>9 cooled F<br>2AD dete<br>N and BD<br>pringer 2<br>es. Availa<br>ing. Use<br>ing. Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>PMT modules<br>ctor modules<br>S ps diode lasen<br>005. Please cont<br>able on www.bec<br>handbook. Avai<br>kl.com | IGB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>112 mm x 130 m<br>detectors<br>avelength detect<br>s<br>act bh for availa<br>ker-hickl.com. C<br>lable on www.be | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm<br>tors<br>billity.<br>contact bh for<br>acker-hickl.con | DCC-100 det<br>GVD-120 sca<br>DB-32 USB-c<br>printed copies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>1 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-150 confocal scanning FLIM system<br><b>elated Literature</b><br>W. Becker, Advanced time-correlated single photon co<br>W. Becker, The bh TCSPC Handbook, 5th edition. 690<br>PML-16-C 16 channel detector head for time-correlated<br>DCS-120 Confocal Scanning FLIM Systems, handbook<br>Modular FLIM systems for Zeiss LSM 510 and LSM 711 | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 ST<br>BDL-SMf<br>pages, 823 referenc<br>d single photon count<br>c. Available on www.b<br>0 laser scanning mic                                                                               | 24 5<br>PC Pentiu<br>) GaAsP :<br>EC and M<br>) cooled F<br>PAD dete<br>N and BD<br>pringer 2<br>es. Avail:<br>ing. User<br>vecker-hio<br>roscopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>PMT modules<br>ctor modules<br>S ps diode lasen<br>005. Please cont<br>able on www.bec<br>handbook. Avai<br>kl.com | IGB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>112 mm x 130 m<br>detectors<br>avelength detect<br>s<br>act bh for availa<br>ker-hickl.com. C<br>lable on www.be | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm<br>tors<br>billity.<br>contact bh for<br>acker-hickl.con | DCC-100 det<br>GVD-120 sca<br>DB-32 USB-c<br>printed copies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ector controller<br>n controller | nodule                  |
| Synchronisation with scanner<br>Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)<br>time channels / pixel<br>16 detector channels (MW FLIM detector)<br><b>peration Environment</b><br>Computer System<br>Bus Connectors<br>Used PCI Slots<br>Total power Consumption<br>Dimensions<br><b>elated Products</b><br>SPC-150 and SPC-150N TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-154 4-channel TCSPC modules<br>SPC-124 compact TCSPC systems<br>FLIM systems for laser scanning microscopes<br>DCS-120 confocal scanning FLIM system<br><b>elated Literature</b><br>W. Becker, Advanced time-correlated single photon co<br>W. Becker, The bh TCSPC Handbook, 5th edition. 690<br>PML-16-C 16 channel detector head for time-correlated<br>DCS-120 Confocal Scanning FLIM Systems, handbook         | 4096 x 40<br>1024 x 10<br>F<br>HPM-100<br>PML-SPE<br>PMC-100<br>id-100 SM<br>BDL-SM<br>butting techniques. SI<br>pages, 823 reference<br>d single photon counf<br>c. Available on www.tb<br>0 laser scanning mici<br>0 laser scanning mici<br>0 laser scanning mici | 24 5<br>PC Pentiu<br>) GaAsP :<br>EC and M<br>) cooled F<br>PAD dete<br>N and BD<br>pringer 2<br>es. Avail:<br>ing. User<br>vecker-hio<br>roscopes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 x 512 25<br>m, multi-core, >8<br>approx.<br>and GaAs hybrid<br>W-FLIM multi-wa<br>PMT modules<br>ctor modules<br>S ps diode lasen<br>005. Please cont<br>able on www.bec<br>handbook. Avai<br>kl.com | IGB RAM and 6<br>PCI<br>1<br>12 W from +5V<br>112 mm x 130 m<br>detectors<br>avelength detect<br>s<br>act bh for availa<br>ker-hickl.com. C<br>lable on www.be | 4 bit operating<br>, 0.7 W from +<br>m x 15 mm<br>tors<br>billity.<br>contact bh for<br>acker-hickl.con | DCC-100 det<br>GVD-120 sca<br>DB-32 USB-c<br>printed copies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ector controller<br>n controller | nodule                  |

### More than 20 years experience in multi-dimensional TCSPC. More than 1500 TCSPC systems worldwide.

## SPC-160 PCIE TCSPC/ FLIM Module

#### **TCSPC / FLIM Module with PCI Express Interface**

Input discriminator bandwidth 4 GHz Sub-ps low-frequency timing wobble Multi-detector / multi-wavelength capability Photon distribution and parameter-tag modes FLIM by bh Megapixel Technology Mosaic FLIM mode Multiscaler imaging mode Parallel counter channel for FLIM intensities Parallel operation of 2, 3 or 4 modules Time channel width down to 813 fs Electrical time resolution (Jitter) 2.5 ps rms Laser repetition rates up to 150 MHz Saturated count rate 12.5 MHz TCSPC dead time 80 ns Intensity-channel dead time <10 ns

Standard fluorescence lifetime experiments Multi-wavelength lifetime experiments Recording of transient fluorescence lifetime effects Single-wavelength FLIM, multi-wavelength FLIM Fast-acquisition FLIM, time-series FLIM Mosaic FLIM, lateral, longitudinal, temporal mosaics FLITS Simultaneous PLIM and FLIM Single and double-exponential FRET imaging Recording of Ca<sup>2+</sup> transients

fNIRS and NIRS experiments Single-molecule spectroscopy FCS, FCCS, Photon Counting Histograms Anti-bunching experiments





 Becker & Hickl GmbH

 Nahmitzer Damm 30

 12277 Berlin, Berlin

 Tel.
 +49 / 30 / 787 56 32

 Fax.
 +49 / 30 / 787 57 34

 email: info@becker-hickl.com

 www.becker-hickl.com

US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com



UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com

#### TII TOKYO INSTRUMENTS, INC.

Japan: Tokyo Instruments Inc. sales@tokyoinst.co.jp www.tokyoinst.co.jp

### Dyna Sense

China: DynaSense Photonics Co. Ltd. info@dyna-sense.com www.dyna-sense.com







## SPC-160 PCIE TCSPC / FLIM Module

| Principle<br>Discriminator Input Bandwidth<br>Time Resolution (FWHM / RMS, electr.)<br>Variance in time of IRF maximum<br>Optimum Input Voltage Range<br>Min. Input Voltage Range<br>Min. Input Pulse Width<br>Threshold<br>Zero Cross Adjust | <1<br>-                                   | Fraction Discrimin<br>4 GHz<br>6.6 ps / 2.5 ps<br>ps over 50 seco<br>30 mV to - 500 n<br>200 ps<br>0 to - 250 mV<br>100 mV to + 100 | nds<br>nV                |                                         | 50.0-<br>43.8-<br>37.6- |                                            | IRF stability<br>over 50 s<br>0.5s per<br>recording |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------|--------------------------------------------|-----------------------------------------------------|
| ynchronisation Channels                                                                                                                                                                                                                       |                                           | 100 1117 10 + 100                                                                                                                   | iii v                    |                                         |                         |                                            |                                                     |
| Principle<br>Discriminator Input Bandwidth                                                                                                                                                                                                    | Constant                                  | Fraction Discrimir<br>4 GHz                                                                                                         | nator (CFD)              |                                         | 31.4-                   |                                            |                                                     |
| Optimal Input Voltage Range<br>Min. Input Pulse Width                                                                                                                                                                                         | -                                         | 30 mV to - 500 n<br>200 ps                                                                                                          | ۱V                       |                                         | 100                     |                                            | 10 ps                                               |
| Threshold                                                                                                                                                                                                                                     |                                           | 0 to -250 mV                                                                                                                        |                          |                                         | 25.2-                   |                                            | HO PS                                               |
| Frequency Range<br>Frequency Divider                                                                                                                                                                                                          |                                           | 0 to 150 MHz<br>1-2-4                                                                                                               |                          |                                         |                         |                                            |                                                     |
| Zero Cross Adjust                                                                                                                                                                                                                             | -1                                        | 00 mV to + 100 r                                                                                                                    | nV                       |                                         | 19.1 -                  |                                            | FWHM 6.6 ps                                         |
| me-to-Amplitude Converters / ADCs<br>Principle                                                                                                                                                                                                | Ramp G                                    | enerator / Biased                                                                                                                   | Amplifier                |                                         | 12.9-                   |                                            | Variance in<br>IRF maximur                          |
| TAC Range<br>Biased Amplifier Gain                                                                                                                                                                                                            |                                           | 50 ns to 5 us<br>1 to 15                                                                                                            |                          |                                         |                         |                                            | time 0.8 ps                                         |
| Biased Amplifier Offset<br>Time Range incl. Biased Amplifier                                                                                                                                                                                  | 0 t                                       | o 50% of TAC Ra<br>3.3 ns to 5 us                                                                                                   | inge                     |                                         | 6.7-                    |                                            |                                                     |
| min. Time / Channel                                                                                                                                                                                                                           |                                           | 813 fs                                                                                                                              |                          |                                         |                         |                                            |                                                     |
| ADC Principle<br>Diff. Nonlinearity, electrical                                                                                                                                                                                               |                                           | sh ADC with Error<br>rms, typ. <1% pe                                                                                               |                          |                                         | 0.5-                    | , aire aire aire aire :                    | nie nie nie nie                                     |
| ata Acquisition (Histogram Mode)                                                                                                                                                                                                              |                                           |                                                                                                                                     |                          |                                         |                         | 4 2.148 2.152 2.196 2.160 ;<br>Time [ns]   | 2.164 2.168 2.172 2.176                             |
| Method<br>Dead Time                                                                                                                                                                                                                           |                                           |                                                                                                                                     |                          | ional histogrammi<br>ent of computer sp |                         |                                            |                                                     |
| Saturated Count Rate<br>Useful count rate                                                                                                                                                                                                     |                                           |                                                                                                                                     | 12                       | 2.5 MHz<br>25 MHz                       |                         |                                            |                                                     |
| Channels / Pixel                                                                                                                                                                                                                              |                                           | 024 256                                                                                                                             | 64                       | 16                                      | 4                       | 1                                          |                                                     |
| max. Scanning Area<br>max. Counts / Time Channel                                                                                                                                                                                              | 16x16 64                                  | 4x64 128 x 1                                                                                                                        |                          | 56 512x512<br>2 <sup>16</sup> -1        | 1024x10                 | )24 2048x204                               | 8                                                   |
| Overflow Control<br>Collection Time                                                                                                                                                                                                           |                                           |                                                                                                                                     |                          | repeat and correct<br>to 100,000 s      | ct                      |                                            |                                                     |
| Display Interval Time                                                                                                                                                                                                                         |                                           |                                                                                                                                     | 0.1 us                   | to 100,000 s                            |                         |                                            |                                                     |
| Repeat Time<br>Sequential Recording                                                                                                                                                                                                           | Programmable Har                          | dware Sequencer                                                                                                                     |                          | to 100,000 s<br>rding by memory :       | swapping, in cu         | urve mode and scan                         | mode                                                |
| Synchronisation with Scanning                                                                                                                                                                                                                 | - 3                                       | pixel,                                                                                                                              | line and frame c         | locks from scann                        | ing device              |                                            |                                                     |
| Count Enable Control<br>Experiment Trigger                                                                                                                                                                                                    |                                           |                                                                                                                                     | 1                        | bit TTL<br>TTL                          |                         |                                            |                                                     |
| <b>ata Acquisition (FIFO / Parameter-Tag Mode)</b><br>Method                                                                                                                                                                                  |                                           | Doromotor toggi                                                                                                                     | og of individual r       | abatana and aanti                       | nuovo viriting t        | a diak                                     |                                                     |
| Online display                                                                                                                                                                                                                                |                                           | Decay                                                                                                                               | unction, FCS, C          | photons and conti<br>cross-FCS, PCH,    | MCS traces              | U UISK                                     |                                                     |
| FCS calculation<br>Number of counts of decay / waveform recording                                                                                                                                                                             |                                           | Multi-ta                                                                                                                            |                          | line calculation ar<br>nlimited         | id online fit           |                                            |                                                     |
| Dead Time                                                                                                                                                                                                                                     |                                           |                                                                                                                                     |                          | 80 ns                                   |                         |                                            |                                                     |
| Saturated count rate, peak<br>Sustained count rate (bus-transfer limited)                                                                                                                                                                     |                                           |                                                                                                                                     | typ                      | 2.5 MHz<br>o. 4 MHz                     |                         |                                            |                                                     |
| Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)                                                                                                                                                              |                                           |                                                                                                                                     | 12                       | 2/12/4<br>2M                            |                         |                                            |                                                     |
| Macro Timer Resolution, internal clock<br>Macro Timer Resolution, clock from SYNC input                                                                                                                                                       |                                           |                                                                                                                                     |                          | ed by MTOF entr<br>marked by MTOF       |                         |                                            |                                                     |
| Curve Control (external Routing)                                                                                                                                                                                                              |                                           |                                                                                                                                     | 4                        | bit TTL                                 | entry in data s         | sileani                                    |                                                     |
| External event markers<br>Count Enable Control                                                                                                                                                                                                |                                           |                                                                                                                                     |                          | bit, TTL<br>bit TTL                     |                         |                                            |                                                     |
| Experiment trigger                                                                                                                                                                                                                            |                                           |                                                                                                                                     |                          | TTL                                     |                         |                                            |                                                     |
| ata Acquisition, FIFO / Parameter-Tag Imaging Mode<br>Method                                                                                                                                                                                  |                                           | Buildup of                                                                                                                          | images from tim          | ne- and waveleng                        | th tanned data          |                                            |                                                     |
| Online display                                                                                                                                                                                                                                |                                           | up to 8 ga                                                                                                                          | ated intensity im        | ages or up to 8 lif                     | etime images            |                                            |                                                     |
| Synchronisation with scanner<br>Dead Time                                                                                                                                                                                                     |                                           |                                                                                                                                     |                          | Clock, and Pixel C<br>tensity Channel:  |                         |                                            |                                                     |
| Detector / Wavelength Channels<br>Image size in FIFO Imaging Mode (64 bit software)                                                                                                                                                           |                                           |                                                                                                                                     | 1                        | 1 to 16                                 |                         |                                            |                                                     |
| time channels / pixel                                                                                                                                                                                                                         | 64                                        | 256                                                                                                                                 | 1024                     | 4096                                    | 4096                    | 4096                                       |                                                     |
| No. of pixels, 1 detector channel<br>No. of pixels, 16 detector channels (MW FLIM detector)                                                                                                                                                   | 4096 x 4096<br>1024 x 1024                | 2048 x 2048<br>512 x 512                                                                                                            | 1024 x 1024<br>256 x 256 | 512 x 512<br>128 x 128                  | 256 x 256<br>128 x 128  | 128 x 128<br>128 x 128                     |                                                     |
| peration Environment                                                                                                                                                                                                                          |                                           |                                                                                                                                     |                          |                                         |                         |                                            |                                                     |
| Computer System<br>Bus Connectors                                                                                                                                                                                                             | PC                                        | Pentium, multi-co                                                                                                                   | re, >8GB RAM a           | and 64 bit operati<br>PCI               | ng system reco          | ommended                                   |                                                     |
| Used PCI Slots                                                                                                                                                                                                                                |                                           |                                                                                                                                     |                          | 1                                       |                         |                                            |                                                     |
| Total power Consumption<br>Dimensions                                                                                                                                                                                                         |                                           | ap                                                                                                                                  |                          | n +5V, 0.7 W from<br>130 mm x 15 mm     | i +12V                  |                                            |                                                     |
| elated Products                                                                                                                                                                                                                               |                                           |                                                                                                                                     |                          |                                         |                         |                                            |                                                     |
| SPC-160 TCSPC / FLIM modules<br>SPC-150 and SPC-150N TCSPC modules                                                                                                                                                                            |                                           | nfocal scanning I<br>aAsP and GaAs I                                                                                                |                          |                                         |                         | and BDS ps diode la<br>detector controller | asers                                               |
| Simple-Tau compact TCSPC systems                                                                                                                                                                                                              | PML-SPEC                                  | and MW-FLIM m<br>20 Si and InGaAs                                                                                                   | ulti-wavelength o        |                                         | GVD-120 s               | scan controller                            | odule                                               |
| FLIM systems for laser scanning microscopes<br>elated Literature                                                                                                                                                                              | iu-100, id-22                             | o orand ingaAs                                                                                                                      | SPAD detector            | modules                                 | DD-32 USI               | B-controlled delay m                       | ouule                                               |
| W. Becker, Advanced time-correlated single photon countin<br>W. Becker (ed.), Advanced time-correlated single photon co<br>W. Becker, The bh TCSPC Handbook, 6th edition, 2015. 76                                                            | unting pplications.<br>8 pages, 1007 refe | Springer 2015. P<br>rences. Available                                                                                               | lease contact bh         | n for availability.                     | act bh for printe       | ed copies.                                 |                                                     |
| DCS-120 Confocal Scanning FLIM Systems, handbook. Ava<br>Modular FLIM systems for Zeiss LSM 510 and LSM 710 last                                                                                                                              | mable of www.bec                          | Kei-HICKI.COM                                                                                                                       |                          |                                         |                         |                                            |                                                     |

## *The SPC-830 remains available but the SPC-160 is recommended* The TCSPC Microscopy Solution SPC-830

### High Resolution Time-Correlated Single Photon Counting Imaging and FCS Module for Laser Scanning Microscopes

- Complete picosecond imaging system on single PC board
- Picosecond resolution
- Ultra-high sensitivity
- Multi detector capability
- High-speed on-board data acquisition
- Works at any scanning speed of microscope
- High resolution picosecond lifetime imaging
- FRET imaging
- High-resolution steady state imaging
- Single-point time-lapse lifetime analysis
- Single-point FCS / lifetime data
- Time channel width down to 813 fs
- Image size up to 4096 x 4096 pixels
- Electrical time resolution down to 8 ps fwhm / 4 ps rms
- ♦ Reversed start/stop: Laser repetition rates up to 200 MHz
- Useful count rate up to 4 MHz dead time 125 ns
- Active and passive scanning control
- Software versions for windows 95 / 98 / 2000 / NT







**Becker & Hickl GmbH** Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com www.becker-hickl.com



US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com



Covered by patents DE 43 39 784 A1 and DE 43 39 787

## The SPC-830 remains available but the SPC-160 is recommended

## The TCSPC Microscopy Solution SPC-830

| Photon Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ormation Franting Disoriesiantes                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Constant Fraction Discriminator                                                                                                                                                                                                                                                                                                             |
| Time Resolution (FWHM / RMS, electr.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 ps / 4 ps                                                                                                                                                                                                                                                                                                                                 |
| Opt. Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 50 mV to - 1 V                                                                                                                                                                                                                                                                                                                            |
| Min. Input Pulse Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400 ps<br>- 20 mV to - 500 mV                                                                                                                                                                                                                                                                                                               |
| Lower Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 100 mV to + 100 mV                                                                                                                                                                                                                                                                                                                        |
| Zero Cross Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                             |
| Synchronisation Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                             |
| Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Constant Fraction Discriminator                                                                                                                                                                                                                                                                                                             |
| Opt. Input Voltage Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 50 mV to - 1 V                                                                                                                                                                                                                                                                                                                            |
| Min. Input Pulse Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 400 ps                                                                                                                                                                                                                                                                                                                                      |
| Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 20 mV to -500 mV                                                                                                                                                                                                                                                                                                                          |
| Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 to 200 MHz                                                                                                                                                                                                                                                                                                                                |
| Frequency Divider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-2-4-8-16                                                                                                                                                                                                                                                                                                                                  |
| Zero Cross Adjust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -100 mV to + 100 mV                                                                                                                                                                                                                                                                                                                         |
| Time to Amplitude Convertor (ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |
| Time-to-Amplitude Converter / ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dome Concreter / Biscord Amplifier                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ramp Generator / Biased Amplifier<br>50 ns to 2 us                                                                                                                                                                                                                                                                                          |
| TAC Range<br>Biased Amplifier Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 to 15                                                                                                                                                                                                                                                                                                                                     |
| Biased Amplifier Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 to 100% of TAC Range                                                                                                                                                                                                                                                                                                                      |
| Time Range incl. Biased Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3 ns to 2 us                                                                                                                                                                                                                                                                                                                              |
| min. Time / Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 813 fs                                                                                                                                                                                                                                                                                                                                      |
| TAC Window Discriminator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Any Window inside TAC Range                                                                                                                                                                                                                                                                                                                 |
| ADC Principle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 ns 12 bit Flash ADC with Error Correction                                                                                                                                                                                                                                                                                                |
| Diff. Nonlinearity (dith width 1/8, 90% of TAC rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                             |
| Diff. Norminearity (diff width 1/0, 50% of 1AO rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                             |
| Data Acquisition, Histogram Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | board 4-dimensional histogramming process over t, x, y, and detector channel number                                                                                                                                                                                                                                                         |
| Dead Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 125ns, independent of computer speed                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                             |
| Saturated Count Rate / Useful Count Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 MHz / 4 MHz                                                                                                                                                                                                                                                                                                                               |
| Number of Time Channels / Pixel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 4 16 64 256 1024 4096                                                                                                                                                                                                                                                                                                                     |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         4         16         64         256         1024         4096           4096 x 4096         2048 x 2048         1024 x 1024         512 x 512         256 x 256         128 x 128         64 x 64                                                                                                                                 |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1         4         16         64         256         1024         4096           4096 x 4096         2048 x 2048         1024 x 1024         512 x 512         256 x 256         128 x 128         64 x 64           2048 x 2048         1024 x 1024         512 x 512         256 x 256         128 x 128         64 x 64         32 x 32 |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 4 16 64 256 1024 4096<br>4096 x 4096 2048 x 2048 1024 x 1024 512 x 512 256 x 256 128 x 128 64 x 64<br>2048 x 2048 1024 x 1024 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32<br>1024 x 1024 512 x 512 256 x 256 128 x 128 64 x 64 32 x 32 16 x 16                                                                                          |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                        |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                        |
| Number of Time Channels / Pixel<br>IImage Resolution (pixels), 1 Detector Channel<br>IImage Resolution (pixels), 4 Detector Channels<br>IImage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>IImage Resolution (pixels), 1 Detector Channel<br>IImage Resolution (pixels), 4 Detector Channels<br>IImage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes                                                                                                                                                                                                                                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method                                                                                                                                                                                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes                                                                                                                                                                                                                                                                                  | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels                                                                                                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br><b>Data Acquisition, FIFO/BIFL Modes</b><br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time                                                                                                                                                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br><b>Data Acquisition, FIFO/BIFL Modes</b><br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)                                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)<br>Multi Module Systems                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)<br>Multi Module Systems<br>Number of modules operable parallel                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Counts / Time Channel<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)<br>Multi Module Systems                                                                             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)<br>Multi Module Systems<br>Number of modules operable parallel                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)<br>Multi Module Systems<br>Number of modules operable parallel<br>Operation Environment<br>Computer System<br>Bus Connector | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                       |
| Number of Time Channels / Pixel<br>Ilmage Resolution (pixels), 1 Detector Channel<br>Ilmage Resolution (pixels), 4 Detector Channels<br>Ilmage Resolution (pixels), 16 Detector Channels<br>Counts / Time Channel ('Single' mode, repeat and<br>Overflow Control<br>Collection Time (per curve or per pixel)<br>Display Interval Time<br>Repeat Time<br>Curve Control (Internal Routing / Scan Sync In Mo<br>Routing Control / Detector Channels<br>Count Enable Control<br>Control Signal Latch Delay<br>Experiment Trigger<br>Data Acquisition, FIFO/BIFL Modes<br>Method<br>Macro Time Resolution<br>ADC Resolution / No. of Time Channels<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)<br>FIFO buffer Capacity (photons)<br>Multi Module Systems<br>Number of modules operable parallel<br>Operation Environment<br>Computer System                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                        |

approx. 20 W at +5V, 0.7 W at +12V 312 mm x 122 mm x 28 mm

#### **Related Products and Accessories**

Detector Heads (MCPs, PMTs), Multichannel Detector Heads, Routing Devices for Multichannel Measurements, Step Motor Controllers, Preamplifiers, PIN and Avalanche Photodiode Modules, ps Diode Lasers, Adapter Cables for Scanning Microscopes. SPC-600/630 TCSPC modules for single molecule and correlation spectroscopy, SPC-700/730 for imaging and SPC-134 for optical tomography. Please downlaod or call for individual data sheets. To control detectors and shutters please see DCC-100 detector controller.

Please visit our web site to download the manual, the device software and application notes.



Dimensions

Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax +49 / 30 / 787 57 34 iwww.becker-hickl.com info@becker-hickl.com

**Boston Electronics Corporation** 91 Boylston Street, Brookline. Massachusetts 02445 USA Tel: (800) 347 5445 or (617) 566 3821, Fax: (617) 731 0935 www.boselec.com tcspc@boselec.com



## DPC-230 16 Channel Photon Correlator

### Photon correlation down to the ps range

16 LVTTL inputs for SPADs or 4 CFD inputs for PMTs Recording of absolute photon times Autocorrelation within 16 LVTTL or 4 CFD channels Cross-correlation between any pairs of LVTTL or CFD channels 3-channel TCSPC mode with 165 ps time channel width Multiscaler operation of 15 LVTTL or 3 CFD channels Single-slot PCI module Operating software for Windows 2000, NT and XP

Fluorescence correlation experiments down to the ps range Antibunching experiments Fluorescence correlation and antibunching from one experiment Luminescence lifetime measurements







**Becker & Hickl GmbH** Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com www.becker-hickl.com



US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com



## DPC-230 16 Channel Photon Correlator

LVTTL Inputs

No. of channels Input Voltage Threshold Min. Input Pulse Width Min. Pulse Distance Connectors

#### **CFD** Inputs

No of channels Threshold Zero Cross Adjust Connectors

#### Experiment Trigger Input Input Voltage

Threshold

#### Data Acquisition, Correlation Mode

Method Correlation of photons Autocorrelation Cross-correlation Time increment Dead Time No of parallel channels On-board FIFO Buffer size Readout Sustained readout rate (typ., depends on computer)

#### Data Acquisition, TCSPC Mode

Method Correlation of photons Start (photon) channels Dead Time Stop channel Stop input rate Stop frequency divider Time channel width On-board FIFO Buffer size Readout Sustained readout rate (typ., depends on computer)

#### Data Acquisition, Multiscaler Mode

Method Correlation of photons Start (reference) channel Stop (photon) channels Dead Time Time channel width On-board FIFO Buffer size Readout Sustained readout rate (typ., depends on computer)

#### **Operation Environment**

Computer System Recommended configuration Bus Connector Power Consumption Dimensions

#### **Related Products**

16 LVTTL 1.4 V 2 ns 5.5 ns MCX, on board

4 - 20 mV to - 500 mV - 100 mV to + 100 mV SMA, front panel

#### LVTTL 1.4 V

Time-tag recording, absolute photon times Multi tau or linear tau algorithm, online or offline all channels any pairs of channels 164.61 ps < 10 ns 16 LVTTL or 4 CFD channels 4 10<sup>6</sup> photons continuous readout during measurement 7 10<sup>6</sup> photons

> Time-tag recording, reversed start-stop Start-stop histogram, online or offline 3 CFD inputs < 10 ns1 CFD input max 150 MHz 1 - 2 - 4164.61 ps $4 10^6 \text{ photons}$ continuous readout during measurement  $7 10^6 \text{ photons}$

Time-tag recording, direct start-multistop Start-stop histogram, online or offline 1 CFD input or 1 LVTTL input 3 CFD inputs or 15 LVTTL inputs < 10 ns 164.61 ps  $4 10^6$  photons continuous readout during measurement  $7 10^6$  photons

> Pentium PC >1024 Mb RAM, >100 Gb HD PCI approx. 12 W from +5V 312 mm x 124 mm x 20 mm

SPC-830, SPC-630, SPC-134, SPC-144, SPC-154 TCSPC modules, MSA-1000 and MSA-300 multiscalers, DCC-100 Detector controller, BDL-375, -405, -440, -473 picosecond / CW diode lasers, id-100 SPAD modules, PMT detector modules, detector / shutter assemblies. Please downlaod or call for individual data sheets and manuals.



Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax +49 / 30 / 787 57 34 iwww.becker-hickl.com info@becker-hickl.com Boston Electronics Corporation

91 Boylston Street, Brookline. Massachusetts 02445 USA Tel: (800) 347 5445 or (617) 566 3821, Fax: (617) 731 0935 www.boselec.com tcspc@boselec.com





### **5ns Photon Counter / Multiscaler**

Ultra-fast accumulation High repetition rate No dead time between sweeps No dead time between channels Fast on-board discriminators Input pulse width down to 800 ps Time / channel down to 5 ns Count rate up to 100 MHz Up to 512 k points / curve Software for Windows 95 / 98 / 2000 / NT

The MSA-300 is a fast multiscaler for photon counting, time-of-flight measurements or other fast particle detection applications. By using a 128 bit memory structure a dead-time-free accumulation of subsequent sweeps is achieved. This makes the MSA-300 exceptionally useful for a wide variety of high-repetition rate signal recording applications.







 Becker & Hickl GmbH

 Nahmitzer Damm 30

 12277 Berlin

 Tel.
 030 / 787 56 32
 http:/

 Fax.
 030 / 787 57 34
 email

http://www.becker-hickl.com
 email: info@becker-hickl.com

US Representative: Boston Electronics Corp 91 Boylston Street, Brookline. Massachusetts 02445 USA Tel: (800) 347 5445 or (617) 566 3821 Fax: (617) 731 0935 www.boselec.com tcspc@boselec.com



# **MSA-300**

#### Specification

Time per Channel Count Rate No of Points / Curve **Overall Recording Length** Accumulation (up to 256 events/point) Accumulation (> 256 events/point) **Count Input Impedance** Count Input Amplitude Count Input Threshold Min.Count Input Pulse Width Trigger Input Impedance Count and Trigger Input Connectors Trigger Input Amplitude Trigger Input Threshold Min. Trigger Pulse Width Data Readout

min. 5 ns up to 100 MHz up to 512 k up to 2.62 ms Hardware, no dead time between recording cycles Software 50 Ω  $\pm 20 \text{ mV}$  to  $\pm 1 \text{ V}$ 0 to  $\pm$  200 mV,  $\pm$  8 bit resolution 800 ps 50 Ω MCX  $\pm 20 \text{ mV}$  to  $\pm 1 \text{ V}$ 0 to  $\pm 1$  V,  $\pm 8$  bit resolution 800 ps subsequent data points are read by subsequent input instructions 1us/point (C<sup>++</sup>, read 1 point and store into a data array)



#### Luminescence Decay Measurements

The sample is excited by laser pulses and the luminescence signal is detected by a PMT in the photon counting mode. Due to the deep memory a time scale from ns to ms can be covered in one measurement.



#### **Time-of-Flight Measurements**

Packages of ions are released by a pulsed source, sent through a drift tube and detected by an MCP. Due to the high accumulation speed of the MSA-300 very high repetion rates and short overall measurement times are achieved.

Accessories: PMTs, PMT detector heads with internal HV supply, preamplifiers, diode lasers, pulse generators for experiment control, step motor controllers. Please see individual data sheets.

1 2001

Please visit our web site to download the manual, the device software and application notes.



Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax +49 / 30 / 787 57 34 http://www.becker-hickl.com info@becker-hickl.com Boston Electronics Corporation 91 Boylston Street, Brookline. Massachusetts 02445 USA Tel: (800) 347 5445 or (617) 566 3821, Fax: (617) 731 0935 www.boselec.com tcspc@boselec.com





### 800 MHz Gated Photon Counter / Multiscaler

**2** Counter Channels

800 MHz Count Rate, 32 bit Resolution Direct Interfacing to most Detectors Multiscaler Mode: Up to 64k Time Channels, min. 250ns / Channel Gated Photon Counting: 1.5 ns min. Gate Pulse Width Event Recording Mode: Up to 32 k Events 32 bit Accumulation Counter for ultra-fast Accumulation

new

new

On-Board Discriminators, Timing and Control Logics PCI Board with fast DMA (Bus Master),

Software for Windows 98, NT, 2k and XP, Parallel Operation of Several Modules Supported



#### **Optical Transient Waveform Recording**

The waveform of the light is measured with a resolution down to 250ns. Two signals can be recorded simultaneously. Applicable to luminescence decay of inorganic samples, phosphorescence, delayed fluorescence, chemoluminescence, LIDAR.

New: The PMS-400A provides a 32 bit accumulation counter which enables accumulation with virtually no dead time between sweeps ( < 100 ns ).

## Recording of Luminescence Spectra

The luminescence and the excitation light are recorded simultaneously. Corrected excitation spectra are obtained by calculating B/A.

#### **Single Molecule Detection**

Recording of photon bursts. If the count rate inside a programmed time interval exceeds a programmed value, the number of photons and the time of the event ist stored.

#### **Gated Detection**

The gate is opened during the laser pulse only. Events outside the laser pulses are suppressed. Exceptionally low background count rate.

#### **Gating off Scattering Pulses**

The gate is closed during the laser pulses. Scattered photons during the laser pulses are suppressed, the luminescence photons outside the laser pulses are recorded.

#### **Specification (Typical Values)**

Counter Channels Count Rate (Input Amplitude 50mV, peak-peak) min. Count Pulse Width min. Gate Width (Input Amplitude 200mV, peak-peak) min Trigger Pulse Width Discriminator Threshold (Count Inputs) Discriminator Threshold (Gate Inputs) Discriminator Threshold (Trigger Input) Input Connectors Counter Width Accumululation Counter Dead time between sweeps No. of Time Bins Time / Bin Hardware Environment Software Environment Dimensions







800 MHz 800 ps 1 ns 1 ns -1 V to +1 V in steps of 4 mV -2 V to +2 V in steps of 16 mV -2 V to +2 V in steps of 16 mV MCX, 50 32 bit 32 bit < 100ns 64 k for each counter channel 250 ns to 100 000 s Pentium PC Windows 95, 98, 2000 or NT 180 mm x 108 mm x 15 mm

2



## Simple-Tau 164 Table-Top TCSPC Systems

### Four-channel single photon counting systems in lap-top format

#### Four fully parallel SPC-160 TCSPC Channels

Laptop computer with extension box Coupled via fast bus extension interface Four parallel SPC-160 TCSPC modules **Picosecond resolution** Time channel width down to 813 fs **Electronic IRF 8 ps FWHM Unprecedented count rate** Unprecedented timing stability Photon distribution and time-tag modes Standard fluorescence decay recording Fast triggered sequential recording Unlimited sequential recording by memory swapping FLIM in histogram and time-tag modes Fast FLIM series in memory-swapping mode **Multi-spectral FLIM** FCS recording Works under windows XP, Vista, 7, 8, 10











Covered by patents DE 43 39 784 and DE 43 39 787



Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax. +49 / 30 / 787 57 34 email: info@becker-hickl.com



US Representative: Boston Electronics Corp tcspc@boselec.com www.boselec.com

UK Representative: Photonic Solutions PLC sales@psplc.com www.psplc.com

## Simple-Tau 164 Table-Top TCSPC Systems

| Photon Channels<br>Principle<br>Time Resolution (FWHM / RMS, electr.)<br>Opt. Input Voltage Range<br>Min. Input Pulse Width<br>Lower Threshold<br>Upper Threshold<br>Zero Cross Adjust                               |                                                                                                                               | Consta           | nt Fraction Discrimi<br>8 ps / 5 ps<br>- 50 mV to - 1 \<br>400 ps<br>- 20 mV to - 500 r<br>-<br>- 100 mV to + 100                               | /<br>nV              |                  |         |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------|-----------------|
| Synchronisation Channels                                                                                                                                                                                             |                                                                                                                               |                  |                                                                                                                                                 |                      |                  |         |                 |
| Principle<br>Opt. Input Voltage Range<br>Min. Input Pulse Width<br>Threshold<br>Frequency Range<br>Frequency Divider<br>Zero Cross Adjust                                                                            |                                                                                                                               | Consta           | nt Fraction Discrimi<br>- 50 mV to - 1 V<br>400 ps<br>- 20 mV to -500 m<br>0 to 200 MHz<br>1-2-4<br>-100 mV to + 100                            | /<br>nV              |                  |         |                 |
|                                                                                                                                                                                                                      |                                                                                                                               |                  |                                                                                                                                                 |                      |                  |         |                 |
| Time-to-Amplitude Converters / ADCs<br>Principle<br>TAC Range<br>Biased Amplifier Gain<br>Biased Amplifier Offset<br>Time Range incl. Biased Amplifier<br>min. Time / Channel<br>ADC Principle<br>Diff. Nonlinearity |                                                                                                                               | (<br>50 ns F     | o Generator / Biased<br>50 ns to 2 us<br>1 to 15<br>0 to 100% of TAC R<br>3.3 ns to 2 us<br>813 fs<br>lash ADC with Erro<br>5% rms, typ. <1% pr | ange<br>r Correction |                  |         |                 |
| Data Acquisition (Histogram Modes)                                                                                                                                                                                   |                                                                                                                               |                  |                                                                                                                                                 |                      |                  |         |                 |
| Method<br>Dead Time<br>Saturated Count Rate, per TCSPC channel / total<br>Useful count rate, per TCSPC channel / total                                                                                               | on-board multi-dimensional histogramming process<br>100ns, independent of computer speed<br>10 MHz / 40 MHz<br>5 MHz / 20 MHz |                  |                                                                                                                                                 |                      |                  | 1024    | 4096            |
| Number of Time Channels / Pixel<br>Image Resolution (pixels), 1 Detector Channel<br>max. Counts / Time Channel                                                                                                       | 1<br>2048 x 2048                                                                                                              | 4<br>1024 x 1024 | 16<br>512 x 512<br>2 <sup>16</sup> -1                                                                                                           | 64<br>256 x 256      | 256<br>128 x 128 | 64 x 64 | 4096<br>32 x 32 |
| Overflow Control<br>Collection Time<br>Display Interval Time                                                                                                                                                         |                                                                                                                               | non              | e / stop / repeat and<br>0.1 us to 10000<br>100ms to 1000                                                                                       | s<br>s               |                  |         |                 |
| Repeat Time<br>Sequential Recording                                                                                                                                                                                  | Unlimit                                                                                                                       |                  | 0.1 us to 1000 s<br>mmable Hardware<br>nemory swapping, ir                                                                                      | Sequencer            | d scan mode      |         |                 |
| Synchronisation with scanning<br>Count Enable Control<br>Experiment Trigger                                                                                                                                          |                                                                                                                               |                  | rame clocks from so<br>1 bit TTL<br>TTL                                                                                                         |                      |                  |         |                 |
| Data Acquisition (FIFO / Time-Tag Mode)                                                                                                                                                                              |                                                                                                                               |                  |                                                                                                                                                 |                      |                  |         |                 |
| Method<br>Online Display<br>Dead Time<br>Output Data Format (ADC / Macrotime / Routing)                                                                                                                              |                                                                                                                               |                  | vidual photons and<br>CS, Cross-FCS, PC<br>125 ns<br>12 / 12 / 3                                                                                |                      |                  |         |                 |
| FIFO buffer Capacity (photons)<br>Macro Timer Resolution, internal clock<br>Macro Timer Resolution, clock from SYNC input<br>Curve Control (external Routing)                                                        | 12 / 12 / 3<br>8 M<br>50ns, 12 bit<br>10ns to 100ns, 12 bit<br>3 bit TTL                                                      |                  |                                                                                                                                                 |                      |                  |         |                 |
| Count Enable Control<br>Waveform recording<br>No of counts per time channel<br>Image Acquisition in time-tag mode                                                                                                    | recording                                                                                                                     |                  | 1 bit TTL<br>e-tag data, up to 16<br>unlimited<br>rame pulses, online                                                                           |                      |                  |         |                 |
| FCS calculation                                                                                                                                                                                                      | recording                                                                                                                     |                  | rithm, online calcula                                                                                                                           |                      |                  |         |                 |
|                                                                                                                                                                                                                      |                                                                                                                               |                  |                                                                                                                                                 |                      |                  |         |                 |

#### **Related Products and Accessories**

SPC-130 through SPC-830 TCSPC boards, Simple-Tau 130, 140, 150, 152 systems, FLIM systems, MCPs, PMT modules, SPAD modules, multi-spectral detector assemlies, routing devices for multichannel TCSPC, preamplifiers, PIN and avalanche photodiode modules, ps diode lasers.

Please download the bh TCSPC Handbook from www.becker-hickl.com



Becker & Hickl GmbH Nahmitzer Damm 30 12277 Berlin, Berlin Tel. +49 / 30 / 787 56 32 Fax +49 / 30 / 787 57 34 iwww.becker-hickl.com info@becker-hickl.com **Boston Electronics Corporation** 

91 Boylston Street, Brookline. Massachusetts 02445 USA Tel: (800) 347 5445 or (617) 566 3821, Fax: (617) 731 0935 www.boselec.com tcspc@boselec.com



This page intentionally blank.



91 Boylston Street, Brookline, MA 02445 tel: (617)566-3821 fax: (617)731-0935 www.boselec.com tcspc@boselec.com

# Can we send you a *FREE* bound copy of The bh TCSPC Handbook?

# 6<sup>th</sup> Edition, 768 pages, 1007 References, December 2014

### by Wolfgang Becker

For your copy, tell us something about your interest in TCSPC and give us your name and address below so that we can send it to you. I am a TCSPC user now

- □ I am thinking about using TCSPC in the future
- □ My interest is microscopy
- □ My interest is single molecule detection

□ My interest is \_\_\_\_\_

Name: \_\_\_\_\_

Company or Institution:

Address: \_\_\_\_\_

Also available useful publications (check the box to request):

**TCSPC** for Microscopy

- **TCSPC Systems**
- **D** Photon Counting Detectors for TCSPC
- **D** Picosecond Lasers for TCSPC

