

Broadband Si based UV photodetector with integrated amplifier

1/4

GENERAL FEATURES

Properties of the TOCON_Si1

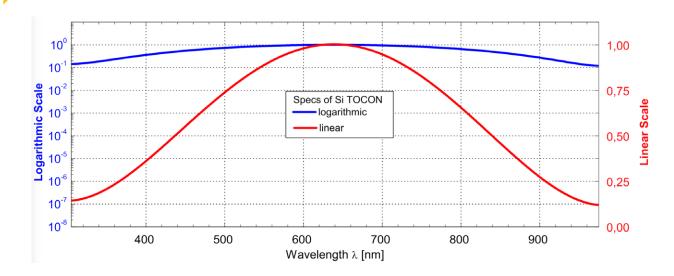
- Broadband Si based UV photodetector in TO5 housing with concentrator lens cap
- o... 5 V voltage output
- peak wavelength at 626 nm
- max. radiation (saturation limit) at peak is 18 nW/cm², minimum radiation (resolution limit) is 1,8 pW/cm²
- · Applications: very low UV radiation, flame detection

What is a TOCON?

A TOCON is a 5 Volt powered photodetector with integrated amplifier converting visible light radiation into a 0...5V voltage output. The V_{out} pin of the TOCON can be directly connected to a controller, a voltmeter or any other data analyzing device with voltage input. Highly modern electronic components and a hermetically sealed metal housing with glass window eliminates noise caused by parasitic resistance paths inside the package or EMI. A TOCON is a perfect solution for each industrial light sensing application starting from stray light detection at pW/cm² level up to sun light measurements at W/cm² level. This thirteen orders of magnitude range is covered by ten different TOCONs that differ by their sensitivity. The TOCONs are produced as broadband sensors or with filters for selective measurement.

NOMENCLATURE

TOCON_	ABC, A, B, C, blue, GaP or Si	1 10
	Spectral response	Irradiance limits (V _{supply} =5V, $\lambda = \lambda_{peak}$)
	ABC = broadband $\lambda_{\text{max}} = 290 \text{ nm}$ $\lambda_{\text{S10\%}} = 227 \text{ nm} \dots 360 \text{ nm}$	1 = 1,8 pW/cm ² 18 nW/cm ²
	A = UVA $\lambda_{\text{max}} = 331 \text{ nm} \lambda_{\text{S10\%}} = 309 \text{ nm} \dots 367 \text{ nm}$	2 = 18 pW/cm ² 180 nW/cm ² 3 = 180 pW/cm ² 1,8 μ W/cm ²
	B = UVB $\lambda_{max} = 280 \text{ nm} \lambda_{S10\%} = 243 \text{ nm} \dots 303 \text{ nm}$	4 = 1,8 nW/cm ² 18 μW/cm ²
	C = UVC $\lambda_{max} = 275 \text{ nm}$ $\lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	5 = 18 nW/cm ² 180 μW/cm ² 6 = 180 nW/cm ² 1,8 mW/cm ²
	Blue = blue light $\lambda_{\text{max}} = 445 \text{ nm}$ $\lambda_{\text{S10\%}} = 390 \text{ nm} \dots 515 \text{ nm}$	7 = 1,8 μW/cm ² 18 mW/cm ²
	GaP = UV + VIS $\lambda_{\text{max}} = 445 \text{ nm} \lambda_{\text{S10\%}} = 190 \text{ nm} \dots 570 \text{ nm}$	8 = 18 μW/cm ² 180 mW/cm ² 9 = 180 μW/cm ² 1,8 W/cm ²
	Si = VIS $\lambda_{max} = 626 \text{ nm} \lambda_{S10\%} = 290 \text{ nm} \dots 1010 \text{ nm}$	10 = 1,8 mW/cm ² 18 W/cm ²
	E = UV-Index spectral response according to CIEo87	2 = 0 UVI 30 UVI

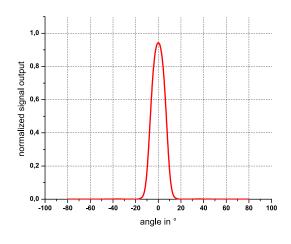

Broadband Si based UV photodetector with integrated amplifier

SPECIFICATIONS

2/4

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Typical Responsivity at Peak Wavelength	S_{max}	2,8E+08	V/W/cm²
Wavelength of max. Spectral Responsivity	λ_{max}	626	nm
Responsivity Range (S=0,1*S _{max})	-	290 1010	nm
General Characteristics (T=25°C, V _{supply} =+5 V)			
Supply Voltage	V_{S}	2,5 5	V
Saturation Voltage	V_{Sat}	V _S - 5%	V
Dark Offset Voltage	V_{Offset}	700	μV
Temperature Coefficient at Peak	T_c	< -0,3	%/K
Current Consumption	1	150	μΑ
Bandwidth (-3 dB)	В	15	Hz
Risetime (10-90%)	t _{rise}	0,182	S
Maximum Ratings			
Operating Temperature	T_{opt}	−25 +85	°C
Storage Temperature	T_{stor}	-40 +100	°C
Soldering Temperature (3s)	T_{sold}	300	°C

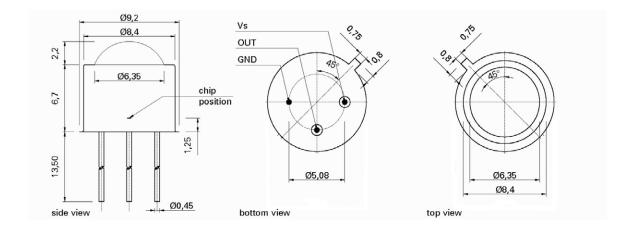
NORMALIZED SPECTRAL RESPONSIVITY



Broadband Si based UV photodetector with integrated amplifier

3/4

FIELD OF VIEW



Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the detector window

DRAWING

Broadband Si based UV photodetector with integrated amplifier

4/4

APPLICATION NOTE FOR TOCONS

The TOCONs need a supply voltage of $V_{\text{supply}}=2.5...5V_{DC}$ and can be directly connected to a controller or voltmeter. Please note that the theoretic maximum signal output is always a little less (approx. 5%) than the supply voltage. To learn more about perfect use of the TOCONs please refer to the TOCON FAQ list published at www.sglux.com.

CAUTION! Wrong wiring leads to destruction of the device.

For easy setup of the device please ask for a TOCON starter kit.

Miniature steel housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body, length 32 mm
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and to connect

Plastic probes

- Optional feature for all TOCON detectors
- probes in small plastic housings with a TOCON inside
- Customized housings available
- Easy to mount and to connect
- Integrated sensor connector (Binder 4-Pin plug)
- Cable available

