SG01L–18
Broadband SiC based UV photodiode A = 1,00 mm²

GENERAL FEATURES

Properties of the SG01L–18 UV photodiode
- Broadband UVA+UVB+UVC, PTB reported high chip stability
- Active Area A = 1,00 mm²
- TO18 hermetically sealed metal housing, 1 isolated pin and 1 case pin
- 10µW/cm² peak radiation results a current of approx. 13 nA

About the material Silicon Carbide (SiC)
SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170°C (338°F). The temperature coefficient of signal (responsivity) is also low, < 0,1%/K. Because of the low noise (dark current in the pA range), very low UV radiation intensities can be measured reliably. Please note that this device needs an appropriate amplifier (see typical circuit on page 3).

Options
SiC photodiodes are available with seven different active chip areas from 0,06 mm² up to 36 mm². Standard version is broadband UVA-UVB-UVC. Four filtered versions lead to a tighter sensitivity range. All photodiodes have a hermetically sealed metal housing (TO type), either a 5,5 mm diameter TO18 housing or a 9,2 mm TO5 housing. Further option is either a 2 pin header (1 isolated, 1 grounded) or a 3 pin header (2 isolated, 1 grounded).

NOMENCLATURE

<table>
<thead>
<tr>
<th>Chip area</th>
<th>Spectral response</th>
<th>Housing</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>S, M, D, L, XL</td>
<td>nothing, A, B, C or E</td>
<td>S, B, SISO90, S5, SISO90</td>
<td>nothing, Lens, MEGA, GIGA</td>
</tr>
</tbody>
</table>

- **S, 0,06 mm²**
 - nothing = broadband
 - $\lambda_{\text{max}} = 280$ nm
 - $\lambda_{S10\%} = 221$ nm ... 358 nm

- **M, 0,20 mm²**
 - A = UVA
 - $\lambda_{\text{max}} = 331$ nm
 - $\lambda_{S10\%} = 309$ nm ... 367 nm

- **D, 0,50 mm²**
 - B = UVB
 - $\lambda_{\text{max}} = 280$ nm
 - $\lambda_{S10\%} = 231$ nm ... 309 nm

- **L, 1,00 mm²**
 - C = UVC
 - $\lambda_{\text{max}} = 275$ nm
 - $\lambda_{S10\%} = 225$ nm ... 287 nm

- **XL, 7,60 mm²**
 - E = UV-Index
 - spectral response according to CIE087
 - $\lambda_{\text{max}} = 280$ nm
 - $\lambda_{S10\%} = 221$ nm ... 358 nm

BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821

Rev. 6.3 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.
SG01L–18
Broadband SiC based UV photodiode A = 1,0 mm²

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Responsivity at Peak Wavelength</td>
<td>S_{max}</td>
<td>0,130</td>
<td>AW $^{-1}$</td>
</tr>
<tr>
<td>Wavelength of max. Spectral Responsivity</td>
<td>λ_{max}</td>
<td>280</td>
<td>nm</td>
</tr>
<tr>
<td>Responsivity Range ($S=0,1*S_{\text{max}}$)</td>
<td>–</td>
<td>221 ... 358</td>
<td>nm</td>
</tr>
<tr>
<td>Visible Blindness ($S_{\text{max}}/S_{>405\text{nm}}$)</td>
<td>VB</td>
<td>$> 10^{10}$</td>
<td>–</td>
</tr>
<tr>
<td>General Characteristics (T=25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Area</td>
<td>A</td>
<td>1,00</td>
<td>mm²</td>
</tr>
<tr>
<td>Dark Current (1V reverse bias)</td>
<td>I_d</td>
<td>3,3</td>
<td>fA</td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>250</td>
<td>pF</td>
</tr>
<tr>
<td>Short Circuit (10µW/cm² at peak)</td>
<td>I_o</td>
<td>13</td>
<td>nA</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>T_c</td>
<td>< 0,1</td>
<td>%/K</td>
</tr>
<tr>
<td>Maximum Ratings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opt}</td>
<td>–55 ... +170</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stor}</td>
<td>–55 ... +170</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature (3s)</td>
<td>T_{sold}</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>$V_{\text{R_{max}}}$</td>
<td>20</td>
<td>V</td>
</tr>
</tbody>
</table>

NORMAlIZED SPECTRAL RESPONSIVITY

![Normalized Spectral Responsivity Graph](image-url)

Specs of 4H SiC Photodiode
- logarithmic
- linear

BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821

Rev. 6.3 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.
SG01L–18
Broadband SiC based UV photodiode A = 1,0 mm²

FIELD OF VIEW

Measurement Setup:
lamp aperture diameter: 10 mm
distance lamp aperture to second aperture: 17 mm
second aperture diameter: 10 mm
distance second aperture to detector: 93 mm
pivot level = top surface of the photodiode window

TYPICAL CIRCUIT

Calculations and Limits:

\[U_{\text{in}} = \frac{1}{2} \times R \times I \sim U_{\text{out}} \]

\[U_{\text{in}} \] depends on load and amplifier type

\[R = 10k\Omega \quad \sim \quad 10G\Omega, \quad C = 3pF \]
Recommendation: \(R \times C \geq 10^{-6}s \)

\[I_{\text{out}} = U_{\text{in}} \div R \]
Bandwidth = DC ... \(\frac{1}{2 \times I \times R \times C} \)

Example:

\[I = 20mA, \quad R = 100\Omega, \quad C = 100 \text{ pF} \]
\[U_{\text{in}} = 20 \times 10^{-3} \times 100 \times 10^{-12} = 2V \]

DRAWINGS

BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821

Rev. 6.3 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.
TOCONs = UV sensors with integrated amplifier

- SiC based UV hybrid detector with amplifier (0–5V output), no additional amplifier needed, direct connection to controller, voltmeter, etc.
- Measures intensities from 1.8 pW/cm² up to 18 W/cm²
- UV broadband, UVA, UVB, UVC or Erythema measurements

Miniature housing with M12x1 thread for the TOCON series

- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body
- Integrated sensor connector (Binder 5-Pin plug) with 2m connector cable
- Easy to mount and connect

Industrial UV probes

- Different housings e.g. with cosine response, water pressure proof or sapphire windows
- Different electronic outputs configurable (voltage, current, USB, CAN)
- Good EMC safety for industrial applications

APPLICATION NOTE FOR PHOTODIODES

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short circuiting of the photodiode. Usual approaches are using a Picoamperemeter or a transimpedance amplifier circuit as shown on page 3.

UPGRADE TO A TOCON OR A PROBE

Industrial UV probes

- Different NIST and PTB traceable calibrations and measurements for all sglux sensors
- Calibration of sensors for irradiation measurements
- Calibration of UV sensors on discrete wavelengths
- Determination of a specific spectral sensor responsivity

CALIBRATION SERVICE