Collimated Beams – What are they used for?

- Applications include
 - UV Dose response for organisms
 - Photopolymerization of materials
 - Wavelength effect studies
 - Fluorescent slides

Collimated Beams and UV Dose

RESIDENCE TIME UV DOSE INTENSITY X How much UV light How much energy The length of exposure is being "dosed" the light source time to the energy into a reactor or (collimated beam) onto a sample is providing

UV Dose is expressed in:

- µWsec/cm² (Microwatt seconds/cm²)
- mWsec/cm² (Milliwatt seconds/cm²) •
- mJ/cm² (Millijoules/cm²) •

UV Dose

- Design Requirement for UV are stated in terms of "Dose"
- UV Dose = UV Intensity (mW/cm²) x Exposure Time (seconds) •

Dose Response Curve Determination

- Place a sample in a petri dish
 - Know the concentration of the challenge organism
- Exposing the sample to collimated UV light for a predetermined amount of time
 - · Measure the intensity of the UV light so you can calculate UV Dose
 - UV Dose = 0.5mW/cm² * 30sec = 15(mW*sec)/cm² = 15mJ/cm²
- · Measuring the concentration of the challenge organism before and after exposure
 - The different in concentration is used to determine the log inactivation, or percentage reduction, of organisms from a certain UV Dose
 - 1 log reduction = 90%
 - 2 log reduction = 99%
 - 3 log reduction = 99.9%
- Plot data a Dose Response Curve (green line)
- Use curve for future reference
 - Can be used to size a larger UV system (red lines)
 - Prevents the same testing being duplicated

What are Dose Response Curves Used for?

erage UV Dose Required for Inactivation (mJ/cm ²)					
Pathogen	1-Log	2-Log	3-Log	4-Lo	
Cryptosporidium parvum oocysts	1.3	2.5	4.3	5.7	
Giardia lamblia cysts	0.3	0.7	1.3	1.7	
Vibrio cholerae	0.8	1.4	2.2	2.9	
Shigella dysenteriae	0.5	1.2	2	3	
Escherichia coli 0 157:H7	1.5	2.8	4.1	5.6	
Salmonella typhi	1.8 - 2.7	4.1 - 4.8	5.5 - 6.4	7.1 - 8	
Shigella sonnei	3.2	4.9	6.5	8.2	
Salmonella enteritidis	5	7	9	10	
Hepatitis A virus	4.1 - 5.5	8.2 - 13.7	12.3 - 22	16.4 - 2	
Poliovirus Type 1	4.1 - 6	8.7 - 14	14.2 - 23	21.5 -	
Coxsackie B5 virus	6.9	13.7	20.6	30	
Rotavirus SA 11	7.1 - 9.1	14.8 - 19	23 - 25	36	

Dose response curves are a critical input when determining UV system sizing for various water treatment applications

Source: Haji Malayeri, A.; Mohseni, M.; Cairns, B.; and Bolton, J. R. 2016 Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae, IUVA News, 18(3): 4-6 + supp. tables.

UV Dose is Important Because Each Organism Will Respond Differently to UV. UV Systems are Typically Sized Based on the Organism that is Most Resistant to UV (e.g. Viruses)

Petri Factor – Why it Matters

- The Petri Factor is the measure of intensity across a sample
 - The higher the number, the less variation there is across the area
- The PearlBeam has a Petri Factor greater than 0.9
 - Means the highest possible fluctuation in treatment across the surface is 10%
 - 0.9 is the research standard, and the PBM surpasses it
- Homemade Collimated Beams typically have very low Petri Factors
 - Hot spotting during testing
- PearlBeam can uniformly irradiate petri dishes up to 60mm in size

Intensity Distribution

Typical 285nm Irradiance at the end of the collimating tube

Model Number*	Wavelength (nm)	Irradiance** (mW/cm²)
S255	255	0.05
S285	285	0.7
D255/285	255 & 285	0.05 & 0.7
T255/265/285	255,265, & 285	0.05, 0.3, & 0.7
T265/285/300	265, 285, & 300	0.3, 0.7, & 0.7
T285/300/365	285, 300, &365	0.7, 0.7, & 13

*Custom PearlBeams are available. Please contact us for details **Irradiance is measured at the bottom of the collimating tube.

