

VioBeam Ultra Narrow Beam UVC LED

- Chip on Board (COB)
- Heat Sinks and Drive

www.boselec.com uv@boselec.com shop.boselec.com 617.566.3821

Data Sheet **Boston**Electronics

VioBeam-1X1-255-V1 | Ultra Narrow Beam 255nm UV LED

The VioBeam-1X1-255-V1 is an ultra narrow beam chip-on-board (COB) UV LED with a peak wavelength of 255±5nm. The COB has an integrated 10° TIR optic that delivers an exceptionally focused and narrow beam, achieving high intensities at longer throw distances. The VioBeam-1X1 series is designed for direct integration (solder-free) and is ideal for applications requiring high far-field intensity and/or focused spot illumination.

Features & Benefits

- Dimensions: 32mm x 32mm x 9.4mm
- Typical Peak Wavelength: 255nm
- Equipped with a 10° fused silica lens
- Ready for plug and play (solder-free) with poke-in connectors and TVS diode
- Integrated thermal technology in LED chip and MCPCB for lowest thermal resistance & reduced thermal decay
- Specialized for collimation, focused illumination, long distance, and fiber coupling applications:
 - Disinfection Life Sciences
 - Air Purification Curing
 - Spectroscopy Sensing
 - Fluorescence Research

BostonElectronics

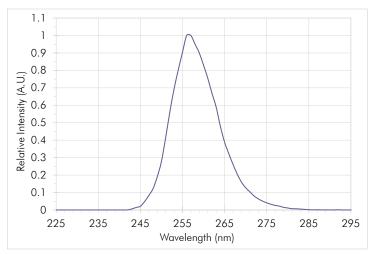
www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Revised March 17, 2025

Electro-Optical Characteristics at $\rm I_{\rm F}{=}500mA$ and $\rm T_{\rm A}{=}25^{\circ}C$

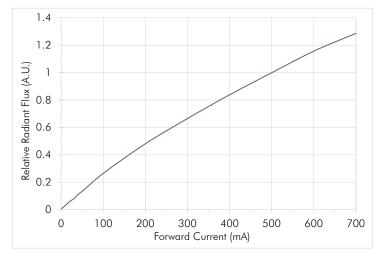
Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	250	255	260
Forward Voltage	V _F	V	5.6	5.9	6.4
Radiant Flux	P_{o}	mW	30	45	60
Full Width of Half Magnitude	Δλ	nm	-	13	-
Radiant Angle	2Φ _{1/2}	Degree	-	10	-
Thermal Resistance, Junction to COB Bottom Surface	R _{th} (J-B)	°C/W	-	0.9	-

Peak Wavelength Tolerance: ±3nm; Forward Voltage Tolerance: 0.1V; Radiant Flux Tolerance: ±10%

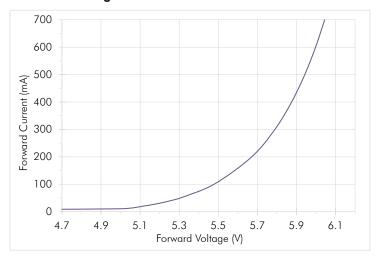

Absolute Maximum Ratings

Parameter	Symbol	Unit	Value
Forward Current	۱ _۴	mA	700
Reverse Voltage	V _R	V	5
Power	P _D	W	4.8
Junction Temperature	T,	°C	90
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 100

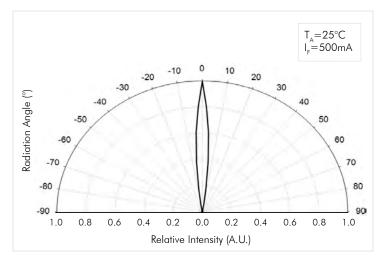
Note: Operating the LED at or above the listed absolute maximum ratings may affect device reliability and result in permanent LED failure.



Spectral Output

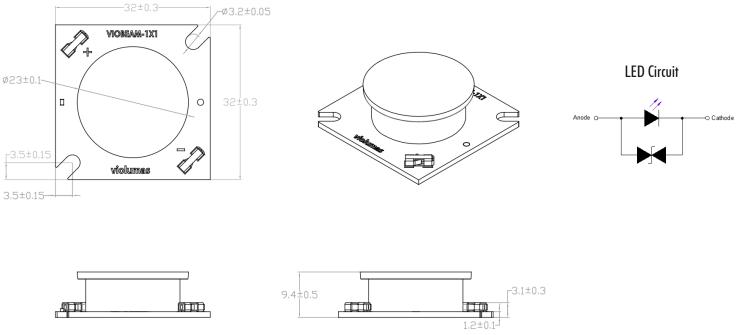

Forward Current vs. Relative Radiant Flux

BostonElectronics

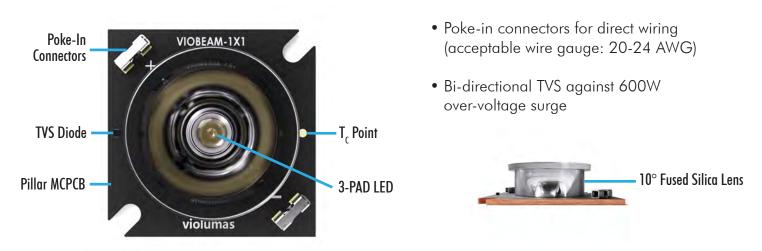


Forward Voltage vs. Forward Current

www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821



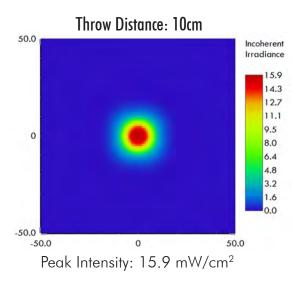
Radiation Pattern

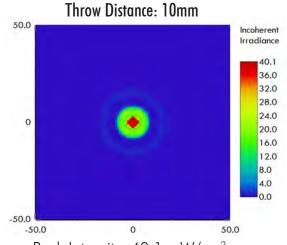

Mechanical Dimensions

Note: The maximum offset (tolerance) for lens alignment over the LED is 0.2mm.

Product Overview

COB LEDs are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and a TVS diode for protection against ESD and voltage issues.


Note: Violumas COB products may be delivered with a protective tape on the backside of the LED. The tape should be removed before operation or assembly.



www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Irradiance Simulations ($T_A = 25^{\circ}C$ and $I_F = 500$ mA)

The VioBeam-1X1 series is ideal for applications requiring highly focused spot illumination or high intensities at longer throw distances. Irradiance plots below are simulated at throw distances of 10 cm and 10 mm with detector area of 100 cm².

Peak Intensity: 40.1 mW/cm²

Heatsink and Driver Kit

The VioBeam-1X1-255-V1 can be provided with a heatsink, mounting screws, and thermal pad for plug-and-play application and direct integration into systems. Driver kits are also available for testing purposes and are assembled with a power cord and plug for either 110VAC or 220VAC operation.

30.2.012424 Heatsink

PS-500A7W Driver Kit Suitable for VioBeam-1X1-255-V1

See heatsink and driver kit products at: https://violumas.com/heatsinks-drivers/

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the LED structure.
- Avoid grounding of the LED copper substrate. Transient charges can propagate from the ground to the heatsink and finally to the copper substrate of the LED unit and damage the dielectric layer from ground charges. An insulator must be placed between the heatsink and the benchtop to avoid transient charge propagation from the ground.

Storage Precautions

- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation. It is recommended to store all products in a controlled environment under 30°C free of dust.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Violumas patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

Data Sheet **Boston**Electronics

VioBeam-1X1-265-V1 | Ultra Narrow Beam 265nm UV LED

The VioBeam-1X1-265-V1 is an ultra narrow beam chip-on-board (COB) UV LED with a peak wavelength of 265±5nm. The COB has an integrated 10° TIR optic that delivers an exceptionally focused and narrow beam, achieving high intensities at longer throw distances. The VioBeam-1X1 series is designed for direct integration (solder-free) and is ideal for applications requiring high far-field intensity and/or focused spot illumination.

Features & Benefits

- Dimensions: 32mm x 32mm x 9.4mm
- Typical Peak Wavelength: 265nm
- \bullet Equipped with a 10° fused silica lens
- Ready for plug and play (solder-free) with poke-in connectors and TVS diode
- Integrated thermal technology in LED chip and MCPCB for lowest thermal resistance & reduced thermal decay
- Specialized for collimation, focused illumination, long distance, and fiber coupling applications:
 - Disinfection Life Sciences
 - Air Purification Curing
 - Spectroscopy Sensing
 - Fluorescence Research

BostonElectronics

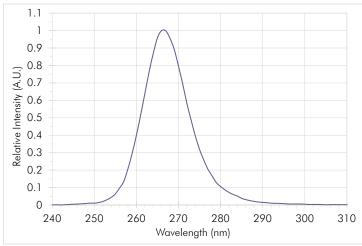
www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Revised March 17, 2025

Electro-Optical Characteristics at $\rm I_{\rm F}{=}700mA$ and $\rm T_{\rm A}{=}25^{\circ}C$

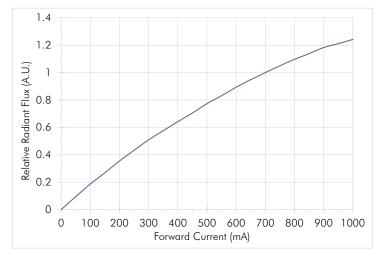
Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	260	265	270
Forward Voltage	V _F	V	5.8	6.2	6.8
Radiant Flux	P_{o}	mW	75	95	120
Full Width of Half Magnitude	Δλ	nm	-	13	-
Radiant Angle	2Φ _{1/2}	Degree	-	10	-
Thermal Resistance, Junction to COB Bottom Surface	R _{th} (J-B)	°C/W	-	0.9	-

Peak Wavelength Tolerance: ±3nm; Forward Voltage Tolerance: 0.1V; Radiant Flux Tolerance: ±10%

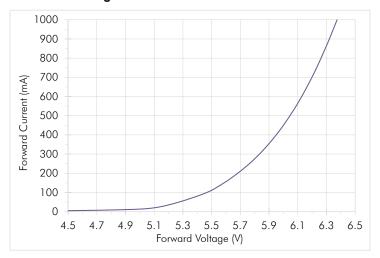

Absolute Maximum Ratings

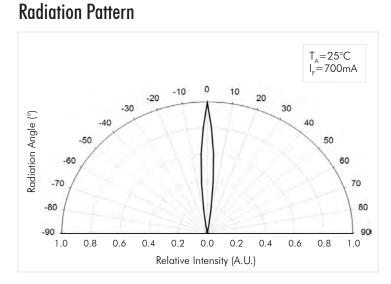
Parameter	Symbol	Unit	Value
Forward Current	۱ _۴	mA	1000
Reverse Voltage	V _R	V	5
Power	P _D	W	6.5
Junction Temperature	T,	°C	90
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 100

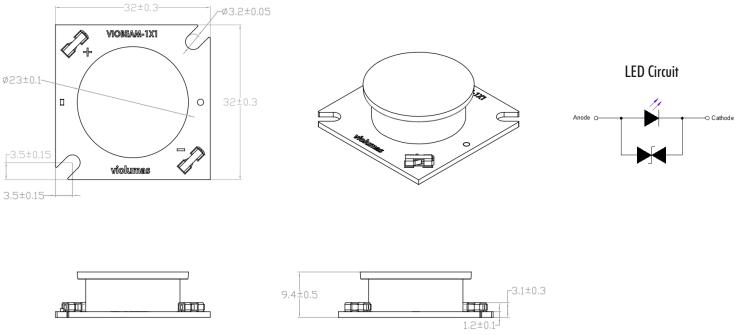
Note: Operating the LED at or above the listed absolute maximum ratings may affect device reliability and result in permanent LED failure.



Spectral Output


Forward Current vs. Relative Radiant Flux


BostonElectronics


Forward Voltage vs. Forward Current

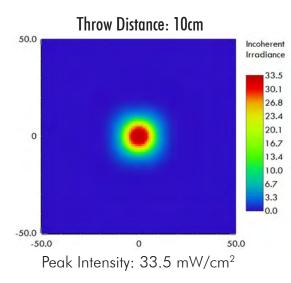
www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

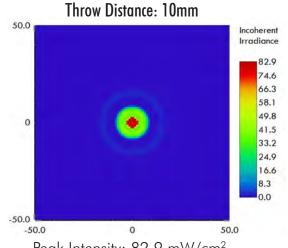
Mechanical Dimensions

Note: The maximum offset (tolerance) for lens alignment over the LED is 0.2mm.

Product Overview

COB LEDs are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and a TVS diode for protection against ESD and voltage issues.


Note: Violumas COB products may be delivered with a protective tape on the backside of the LED. The tape should be removed before operation or assembly.



www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Irradiance Simulations ($T_A = 25^{\circ}C$ and $I_F = 700$ mA)

The VioBeam-1X1 series is ideal for applications requiring highly focused spot illumination or high intensities at longer throw distances. Irradiance plots below are simulated at throw distances of 10 cm and 10 mm with detector area of 100 cm².

Peak Intensity: 82.9 mW/cm²

Heatsink and Driver Kit

The VioBeam-1X1-265-V1 can be provided with a heatsink, mounting screws, and thermal pad for plug-and-play application and direct integration into systems. Driver kits are also available for testing purposes and are assembled with a power cord and plug for either 110VAC or 220VAC operation.

30.2.012424 Heatsink

PS-700A6W Driver Kit Suitable for VioBeam-1X1-265-V1

See heatsink and driver kit products at: https://violumas.com/heatsinks-drivers/

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the LED structure.
- Avoid grounding of the LED copper substrate. Transient charges can propagate from the ground to the heatsink and finally to the copper substrate of the LED unit and damage the dielectric layer from ground charges. An insulator must be placed between the heatsink and the benchtop to avoid transient charge propagation from the ground.

Storage Precautions

- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation. It is recommended to store all products in a controlled environment under 30°C free of dust.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Violumas patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

Data Sheet **Boston**Electronics

VioBeam-1X1-275-V1 | Ultra Narrow Beam 275nm UV LED

The VioBeam-1X1-275-V1 is an ultra narrow beam chip-on-board (COB) UV LED with a peak wavelength of 275±5nm. The COB has an integrated 10° TIR optic that delivers an exceptionally focused and narrow beam, achieving high intensities at longer throw distances. The VioBeam-1X1 series is designed for direct integration (solder-free) and is ideal for applications requiring high far-field intensity and/or focused spot illumination.

Features & Benefits

- Dimensions: 32mm x 32mm x 9.4mm
- Typical Peak Wavelength: 275nm
- Equipped with a 10° fused silica lens
- Ready for plug and play (solder-free) with poke-in connectors and TVS diode
- Integrated thermal technology in LED chip and MCPCB for lowest thermal resistance & reduced thermal decay
- Specialized for collimation, focused illumination, long distance, and fiber coupling applications:
 - Disinfection Life Sciences
 - Air Purification Curing
 - Spectroscopy Sensing
 - Fluorescence Research

BostonElectronics

www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Revised March 17, 2025

Electro-Optical Characteristics at $\rm I_{\rm F}{=}700mA$ and $\rm T_{\rm A}{=}25^{\circ}C$

Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	270	275	280
Forward Voltage	V _F	V	5.8	6.2	6.8
Radiant Flux	P_{o}	mW	90	110	125
Full Width of Half Magnitude	Δλ	nm	-	13	-
Radiant Angle	2Φ _{1/2}	Degree	-	10	-
Thermal Resistance, Junction to COB Bottom Surface	R _{th} (J-B)	°C/W	-	0.9	-

Peak Wavelength Tolerance: ±3nm; Forward Voltage Tolerance: 0.1V; Radiant Flux Tolerance: ±10%

Absolute Maximum Ratings

Parameter	Symbol	Unit	Value
Forward Current	١ _F	mA	1000
Reverse Voltage	V _R	V	5
Power	P _D	W	6.5
Junction Temperature	T,	°C	90
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 100

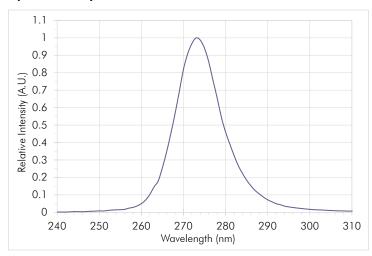
Note: Operating the LED at or above the listed absolute maximum ratings may affect device reliability and result in permanent LED failure.

 $T_{A}=25^{\circ}C$

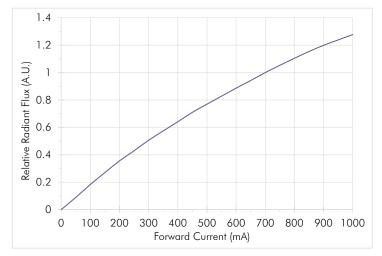
50 60

0.8

70


80

90


1.0

I_= 700mA

Spectral Output

Forward Current vs. Relative Radiant Flux

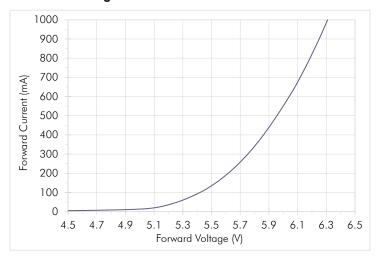
Forward Voltage vs. Forward Current

0.4

0.2

0.0

Relative Intensity (A.U.)


0.2

0.4

0.6

Radiation Pattern

Radiation Angle (°)

0

10

20

30

40

-10

-20

-30

-40

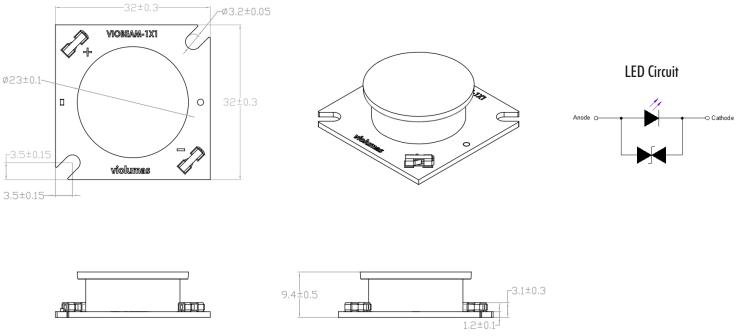
-50

0.8

0.6

-60 -70 /

-80


-90

1.0

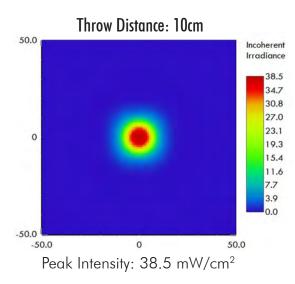
BostonElectronics

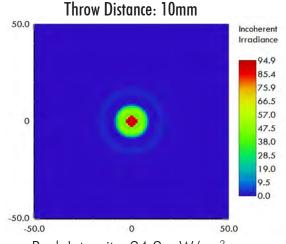
www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Mechanical Dimensions

Note: The maximum offset (tolerance) for lens alignment over the LED is 0.2mm.

Product Overview


COB LEDs are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and a TVS diode for protection against ESD and voltage issues.



Note: Violumas COB products may be delivered with a protective tape on the backside of the LED. The tape should be removed before operation or assembly.

Irradiance Simulations ($T_A = 25^{\circ}C$ and $I_F = 700$ mA)

The VioBeam-1X1 series is ideal for applications requiring highly focused spot illumination or high intensities at longer throw distances. Irradiance plots below are simulated at throw distances of 10 cm and 10 mm with detector area of 100 cm².

Peak Intensity: 94.9 mW/cm²

Heatsink and Driver Kit

The VioBeam-1X1-275-V1 can be provided with a heatsink, mounting screws, and thermal pad for plug-and-play application and direct integration into systems. Driver kits are also available for testing purposes and are assembled with a power cord and plug for either 110VAC or 220VAC operation.

30.2.012424 Heatsink

PS-700A6W Driver Kit Suitable for VioBeam-1X1-275-V1

See heatsink and driver kit products at: https://violumas.com/heatsinks-drivers/

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the LED structure.
- Avoid grounding of the LED copper substrate. Transient charges can propagate from the ground to the heatsink and finally to the copper substrate of the LED unit and damage the dielectric layer from ground charges. An insulator must be placed between the heatsink and the benchtop to avoid transient charge propagation from the ground.

Storage Precautions

- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation. It is recommended to store all products in a controlled environment under 30°C free of dust.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Violumas patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

Data Sheet **Boston**Electronics

VioBeam-1X1-295 | Ultra Narrow Beam 295nm UV LED

The VioBeam-1X1-295 is an ultra narrow beam chip-on-board (COB) UV LED with a peak wavelength of 295±5nm. The COB has an integrated 10° TIR optic that delivers an exceptionally focused and narrow beam, achieving high intensities at longer throw distances. The VioBeam-1X1 series is designed for direct integration (solder-free) and is ideal for applications requiring high far-field intensity and/or focused spot illumination.

Features & Benefits

- Dimensions: 32mm x 32mm x 9.4mm
- Typical Peak Wavelength: 295nm
- \bullet Equipped with a 10° fused silica lens
- Ready for plug and play (solder-free) with poke-in connectors and TVS diode
- Integrated thermal technology in LED chip and MCPCB for lowest thermal resistance & reduced thermal decay
- Specialized for collimation, focused illumination, long distance, and fiber coupling applications:
 - Disinfection Life Sciences
 - Air Purification Curing
 - Spectroscopy Sensing
 - Fluorescence Research

BostonElectronics

www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Revised March 17, 2025

Electro-Optical Characteristics at $\rm I_{\rm F}{=}700mA$ and $\rm T_{\rm A}{=}25^{\circ}C$

Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	290	295	300
Forward Voltage	V _F	V	5.1	5.8	6.2
Radiant Flux	Po	mW	70	80	100
Full Width of Half Magnitude	Δλ	nm	-	12.3	-
Radiant Angle	2Φ _{1/2}	Degree	-	10	-
Thermal Resistance, Junction to COB Bottom Surface	R _{th} (J-B)	°C/W	-	0.9	-

Peak Wavelength Tolerance: ±3nm; Forward Voltage Tolerance: 0.1V; Radiant Flux Tolerance: ±10%

Absolute Maximum Ratings

Parameter	Symbol	Unit	Value
Forward Current	١ _F	mA	1000
Reverse Voltage	V _R	V	5
Power	P _D	W	6.5
Junction Temperature	T,	°C	90
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 100

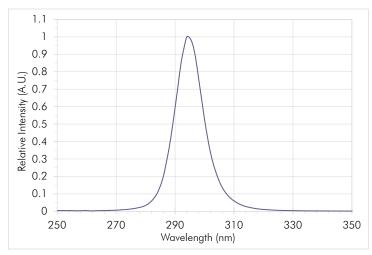
Note: Operating the LED at or above the listed absolute maximum ratings may affect device reliability and result in permanent LED failure.

T_A=25°C

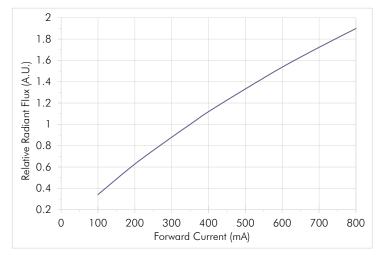
50 60

0.8

70


80

90


1.0

I_= 700mA

Spectral Output

Forward Current vs. Relative Radiant Flux

Forward Voltage vs. Forward Current

0.4

0.2

0.0

Relative Intensity (A.U.)


0.2

0.4

0.6

Radiation Pattern

Radiation Angle (°)

0

10

20

30

40

-10

-20

-30

-40

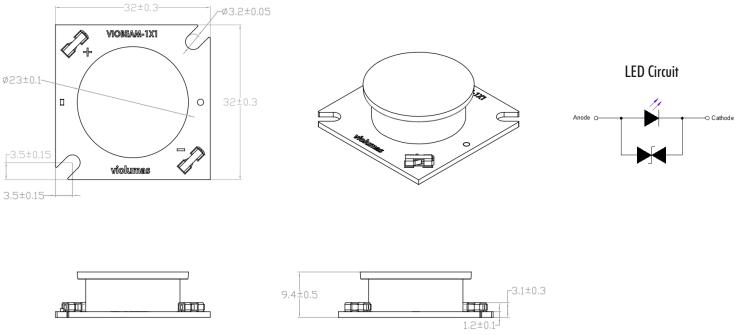
-50

0.8

0.6

-60 -70 /

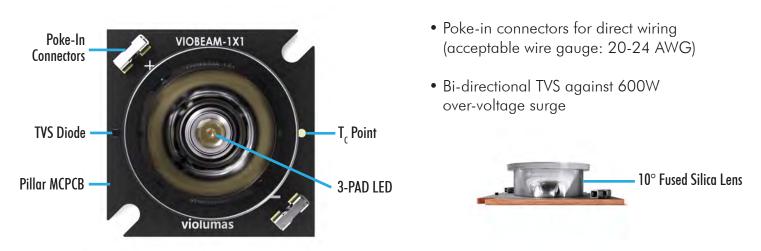
-80


-90

1.0

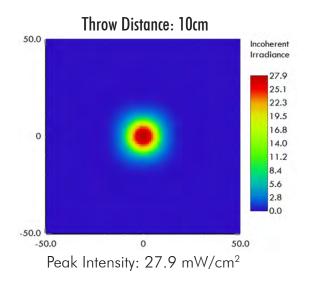
BostonElectronics

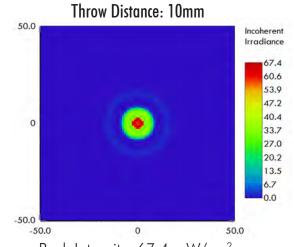
www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821


Mechanical Dimensions

Note: The maximum offset (tolerance) for lens alignment over the LED is 0.2mm.

Product Overview


COB LEDs are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and a TVS diode for protection against ESD and voltage issues.



Note: Violumas COB products may be delivered with a protective tape on the backside of the LED. The tape should be removed before operation or assembly.

Irradiance Simulations ($T_A = 25^{\circ}C$ and $I_F = 700$ mA)

The VioBeam-1X1 series is ideal for applications requiring highly focused spot illumination or high intensities at longer throw distances. Irradiance plots below are simulated at throw distances of 10 cm and 10 mm with detector area of 100 cm².

Peak Intensity: 67.4 mW/cm²

Heatsink and Driver Kit

The VioBeam-1X1-295 can be provided with a heatsink, mounting screws, and thermal pad for plug-and-play application and direct integration into systems. Driver kits are also available for testing purposes and are assembled with a power cord and plug for either 110VAC or 220VAC operation.

30.2.012424 Heatsink

PS-700A6W Driver Kit Suitable for VioBeam-1X1-295

See heatsink and driver kit products at: https://violumas.com/heatsinks-drivers/

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the LED structure.
- Avoid grounding of the LED copper substrate. Transient charges can propagate from the ground to the heatsink and finally to the copper substrate of the LED unit and damage the dielectric layer from ground charges. An insulator must be placed between the heatsink and the benchtop to avoid transient charge propagation from the ground.

Storage Precautions

- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation. It is recommended to store all products in a controlled environment under 30°C free of dust.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Violumas patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

Data Sheet **Boston**Electronics

VioBeam-1X1-310-V1 | Ultra Narrow Beam 310nm UV LED

The VioBeam-1X1-310-V1 is an ultra narrow beam chip-on-board (COB) UV LED with a peak wavelength of 308±5nm. The COB has an integrated 10° TIR optic that delivers an exceptionally focused and narrow beam, achieving high intensities at longer throw distances. The VioBeam-1X1 series is designed for direct integration (solder-free) and is ideal for applications requiring high far-field intensity and/or focused spot illumination.

Features & Benefits

- Dimensions: 32mm x 32mm x 9.4mm
- Typical Peak Wavelength: 308nm
- \bullet Equipped with a 10° fused silica lens
- Ready for plug and play (solder-free) with poke-in connectors and TVS diode
- Integrated thermal technology in LED chip and MCPCB for lowest thermal resistance & reduced thermal decay
- Specialized for collimation, focused illumination, long distance, and fiber coupling applications:
 - Disinfection Life Sciences
 - Air Purification Curing
 - Spectroscopy Sensing
 - Fluorescence Research

BostonElectronics

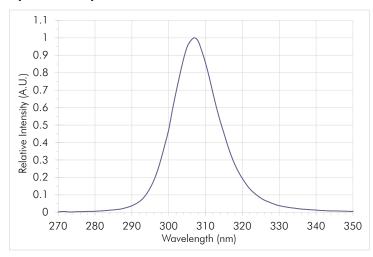
www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Revised March 17, 2025

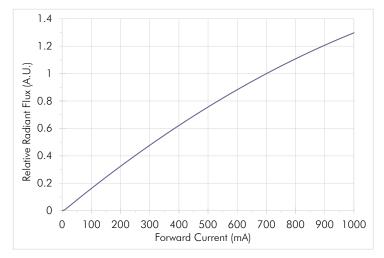
Electro-Optical Characteristics at $\rm I_{\rm F}{=}700mA$ and $\rm T_{\rm A}{=}25^{\circ}C$

Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	303	308	313
Forward Voltage	V _F	V	5.5	6.0	7.0
Radiant Flux	P_{o}	mW	80	100	120
Full Width of Half Magnitude	Δλ	nm	-	15	-
Radiant Angle	2Φ _{1/2}	Degree	-	10	-
Thermal Resistance, Junction to COB Bottom Surface	R _{th} (J-B)	°C/W	-	0.9	-

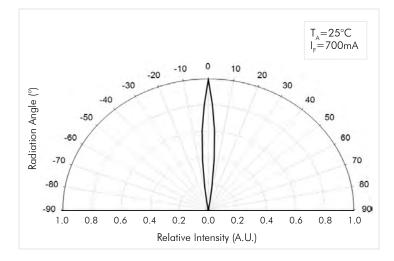
Peak Wavelength Tolerance: ±3nm; Forward Voltage Tolerance: 0.1V; Radiant Flux Tolerance: ±10%


Absolute Maximum Ratings

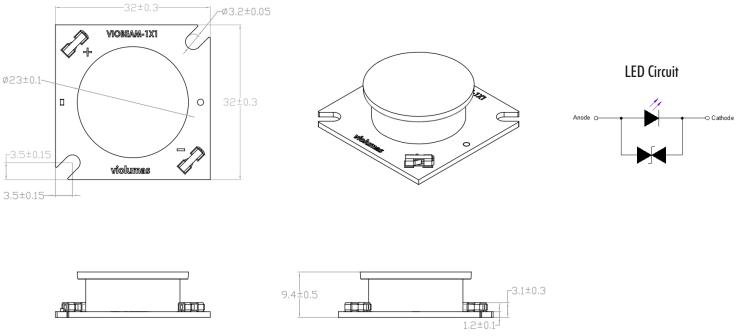
Parameter	Symbol	Unit	Value
Forward Current	١ _F	mA	1000
Reverse Voltage	V _R	V	5
Power	P _D	W	6.5
Junction Temperature	T,	°C	90
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 100


Note: Operating the LED at or above the listed absolute maximum ratings may affect device reliability and result in permanent LED failure.


Spectral Output


Forward Current vs. Relative Radiant Flux

Forward Voltage vs. Forward Current



Radiation Pattern

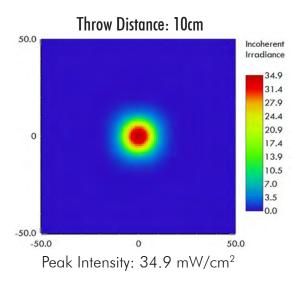
BostonElectronics

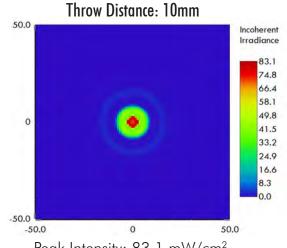
Mechanical Dimensions

Note: The maximum offset (tolerance) for lens alignment over the LED is 0.2mm.

Product Overview

COB LEDs are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and a TVS diode for protection against ESD and voltage issues.


Note: Violumas COB products may be delivered with a protective tape on the backside of the LED. The tape should be removed before operation or assembly.



www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821

Irradiance Simulations ($T_A = 25^{\circ}C$ and $I_F = 700$ mA)

The VioBeam-1X1 series is ideal for applications requiring highly focused spot illumination or high intensities at longer throw distances. Irradiance plots below are simulated at throw distances of 10 cm and 10 mm with detector area of 100 cm².

Peak Intensity: 83.1 mW/cm²

Heatsink and Driver Kit

The VioBeam-1X1-310-V1 can be provided with a heatsink, mounting screws, and thermal pad for plug-and-play application and direct integration into systems. Driver kits are also available for testing purposes and are assembled with a power cord and plug for either 110VAC or 220VAC operation.

30.2.012424 Heatsink

PS-700A6W Driver Kit Suitable for VioBeam-1X1-310-V1

See heatsink and driver kit products at: https://violumas.com/heatsinks-drivers/

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the LED structure.
- Avoid grounding of the LED copper substrate. Transient charges can propagate from the ground to the heatsink and finally to the copper substrate of the LED unit and damage the dielectric layer from ground charges. An insulator must be placed between the heatsink and the benchtop to avoid transient charge propagation from the ground.

Storage Precautions

- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation. It is recommended to store all products in a controlled environment under 30°C free of dust.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Violumas patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.