

310nm UVC LED

- SMD

 Iow, medium & high power
- Chip on Board (COB)
- Light Bars (12x1)
- Application Sets Plug-and-Play

BostonElectronics

www.boselec.com uv@boselec.com shop.boselec.com 617.566.3821

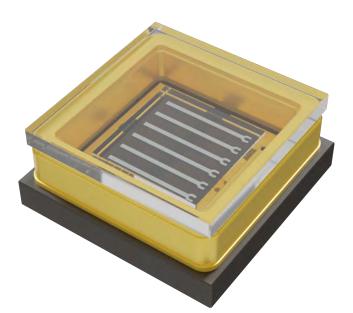
310 UVC LED

Contents

SMD

- low power 37 mW, 130 deg.
- medium power 115 mW, 30 deg.
- high power 400 mW, 60 deg.

СОВ


- medium power
- high power
- 12 x 1 light bar
- low power also available

Application Sets - Plug-and-Play

WS3535C48LF-310 Low Power UVB LED SMD

WS3535C48LF-310 is a UV LED Surface Mount Device (SMD) offering UV radiation at a peak wavelength of 308±5nm. The WS3535C48LF series is packaged in a single-chip structure equipped with a flat window lens for low power UV output. With its conventional pad structure and compact size, the WS3535C48LF series is suitable for applications requiring low UV output and energy consumption.

FEATURES & BENEFITS

- Optical output up to 42mW
- Dimensions: 3.5x3.5mm
- Equipped with 130° flat lens
- Ideal for low power applications

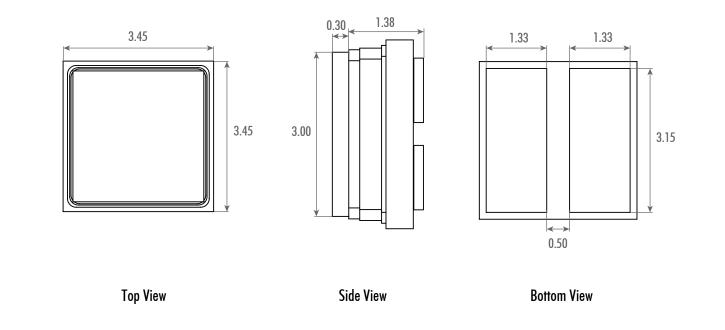
BostonElectronics

Revised August 6, 2021

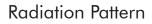
violumas _____

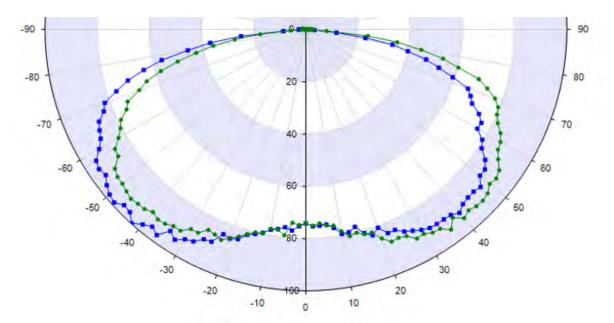
Low Power UVB LED SMD

Electro-Optical Characteristics at T=25°C and $\rm I_{\rm F}$ =350mA

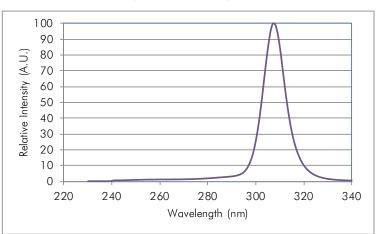

Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	$\lambda_{\rm P}$	nm	303	308	313
Forward Voltage	V _F	V	-	5.7	-
Radiant Flux	P_{o}	mW	32	37	42
Full Width of Half Magnitude	Δλ	nm	-	13.6	-
Radiant Angle	2Φ _{1/2}	Degree	-	130	-
Thermal Resistance, Junction to Solder Joint	R _{th} (J-S)	°C/W	-	9	-

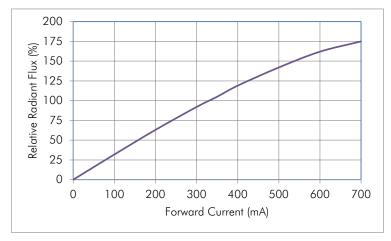
Absolute Maximum Ratings


Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	700
Reverse Voltage	V _R	V	5
Power	Po	W	4.5
Junction Temperature	T,	°C	90
Operating Temperature	T _{opr}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 100

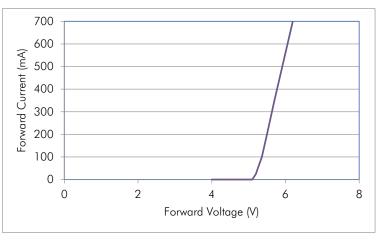

violumas -

Low Power UVB LED SMD


Mechanical Dimensions

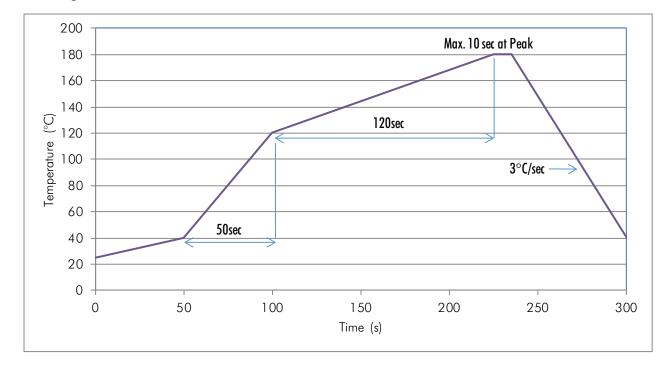

Low Power UVB LED SMD

violumas



Spectral Output

Forward Current vs. Relative Radiant Flux



Forward Voltage vs. Forward Current

Low Power UVB LED SMD

Soldering Guidelines

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.

Storage Precautions

- Perform soldering as soon as the moisture-proof packaging is opened.
- After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

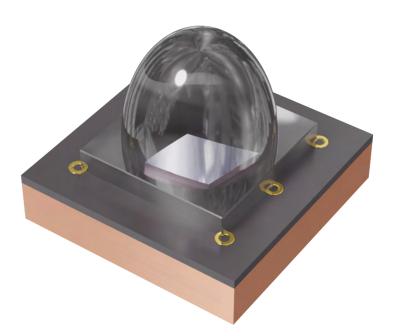
- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do
 not look directly into the UV light during optical measurements even through optical instruments. Protect the body,
 skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.


Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas.

VS5252C48L3-310-V1 Mid Power UVB LED SMD

VS5252C48L3-310-V1 is a UV LED Surface Mount Device (SMD) offering UV radiation at a peak wavelength of 308±5nm. Each SMD is structured based on the patented 3-PAD LED Flip Chip and unique low temperature bonding technologies to further boost lighting efficiency and decrease the thermal resistance. The VS5252C48L3 series is packaged in a single-chip structure equipped with a 30° lens for mid power UV output.

FEATURES & BENEFITS

- Optical output up to 130mW
- Dimensions: 5.2x5.2mm
- \bullet Equipped with 30° fused silica lens
- Ideal for mid power applications

THE VIOLUMAS DIFFERENCE

- 3-PAD flip chip structure
- \bullet Lowest thermal resistance at 0.9°C/W
- Minimal thermal decay with higher output
- Industry-leading reliability & lifetime

BostonElectronics **Revised September 25, 2023**

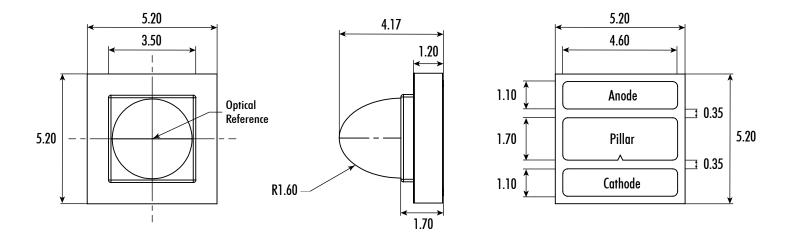
violumas _____

Mid Power UVB LED SMD

Electro-Optical Characteristics at T=25°C and $\rm I_{\rm F}$ =700mA

Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	$\lambda_{\rm P}$	nm	303	308	313
Forward Voltage	V _F	V	5.5	6.0	6.75
Radiant Flux	P_{o}	mW	100	115	130
Full Width of Half Magnitude	Δλ	nm	-	15	-
Radiant Angle	2Φ _{1/2}	Degree	-	30	-
Thermal Resistance, Junction to Solder Joint	R _{th} (J-S)	°C/W	-	0.9	-

Absolute Maximum Ratings

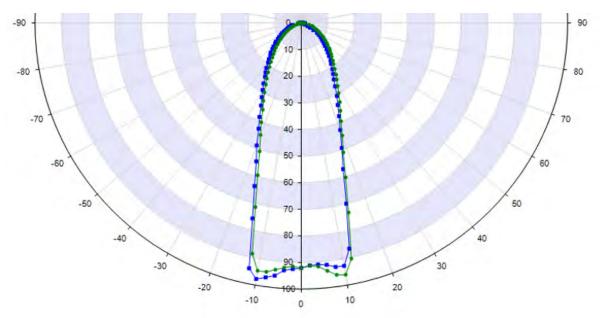

Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	1000
Reverse Voltage	V _R	V	5
Power	P _D	W	6.5
Junction Temperature	Tj	°C	120
Operating Temperature	T _{opr}	°C	-30 ~ 85
Storage Temperature	T _{STG}	°C	-40 ~ 105

Reliability

Test	Condition	Test Duration	Test Failed/Tested
Thermal Shock	-45°C ~ 125°C	2000 Cycles	0/10

Mid Power UVB LED SMD

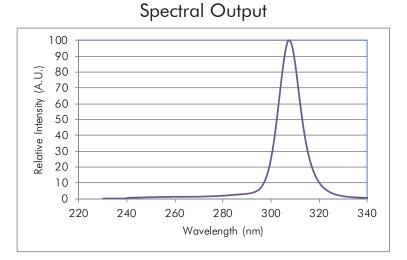
Mechanical Dimensions

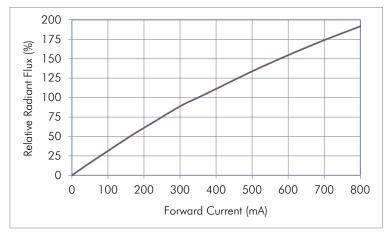


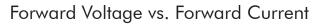
Top View

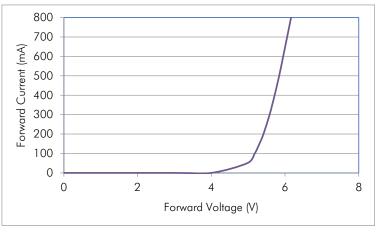
Side View

Bottom View

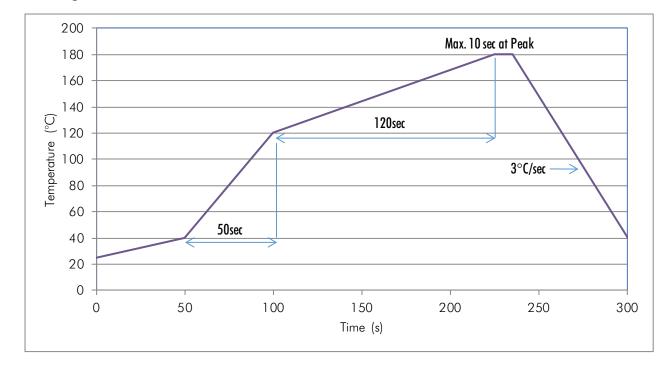

Radiation Pattern


VS5252C48L3-310-V1


Mid Power UVB LED SMD


violumas

Forward Current vs. Relative Radiant Flux



Mid Power UVB LED SMD

Soldering Guidelines

Recommended MCPCB

Violumas recommends the use of the Pillar MCPCB with Violumas LEDs for maximum performance and reliability. The data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB. Please consult the Violumas engineering team for further recommendations on MCPCB options.

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the 3-PAD LED structure.

Storage Precautions

- Perform soldering as soon as the moisture-proof packaging is opened.
- After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

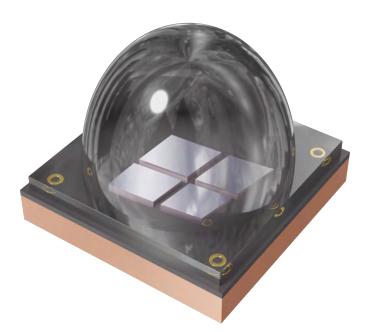
Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers


Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

VS7272C48L6-310-V1 High Power UVB LED SMD

VS7272C48L6-310-V1 is a UV LED Surface Mount Device (SMD) offering UV radiation at a peak wavelength of 308±5nm. Each SMD is structured based on the patented 3-PAD LED Flip Chip and unique low temperature bonding technologies to further boost lighting efficiency and decrease the thermal resistance. The VS7272C48L6 series is packaged in a single-chip structure equipped with a 60° lens for high power UV output.

FEATURES & BENEFITS

- Optical output up to 450mW
- Dimensions: 7.2x7.2mm
- \bullet Equipped with 60° fused silica lens
- Ideal for high power applications

THE VIOLUMAS DIFFERENCE

- 3-PAD flip chip structure
- \bullet Lowest thermal resistance at 0.32°C/W
- Minimal thermal decay with higher output
- Industry-leading reliability & lifetime

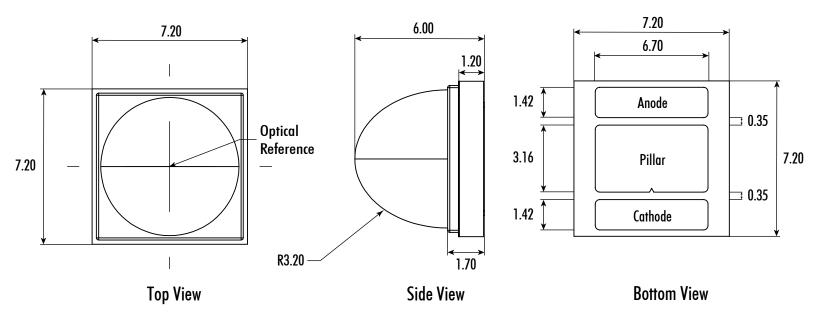
BostonElectronics **Revised September 25, 2023**

violumas _____

Electro-Optical Characteristics at T=25°C and $\rm I_{\rm F}$ =1400mA

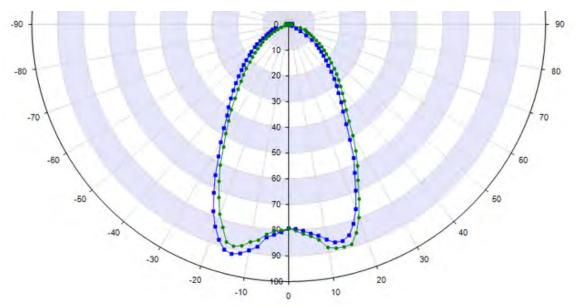
Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	303	308	313
Forward Voltage	V _F	V	11.0	12.0	13.5
Radiant Flux	Po	mW	340	400	450
Full Width of Half Magnitude	Δλ	nm	-	15	-
Radiant Angle	2Φ _{1/2}	Degree	-	60	-
Thermal Resistance, Junction to Solder Joint	R _{th} (J-S)	°C/W	-	0.32	-

Absolute Maximum Ratings


Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	2000
Reverse Voltage	V _R	V	10
Power	P _D	W	26
Junction Temperature	Tj	°C	120
Operating Temperature	T _{opr}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 105

Reliability

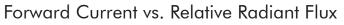
Test	Condition	Test Duration	Test Failed/Tested
Thermal Shock	-45°C ~ 125°C	2000 Cycles	0/10

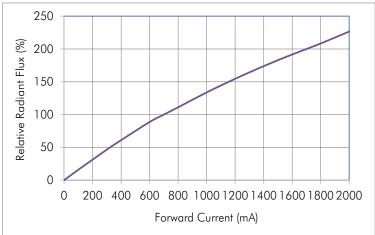

V\$7272C48L6-310-V1

High Power UVB LED SMD

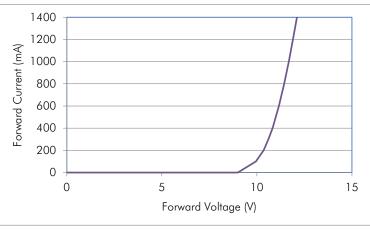
Mechanical Dimensions

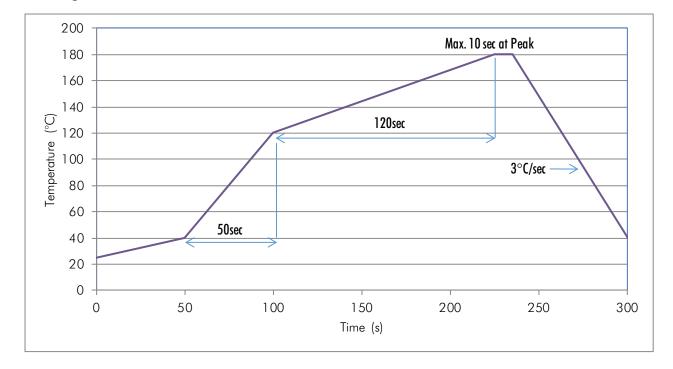
Radiation Pattern




V\$7272C48L6-310-V1

High Power UVB LED SMD


violumas



Forward Voltage vs. Forward Current

High Power UVB LED SMD

Soldering Guidelines

Recommended MCPCB

Violumas recommends the use of the Pillar MCPCB with Violumas LEDs for maximum performance and reliability. The data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB. Please consult the Violumas engineering team for further recommendations on MCPCB options.

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the 3-PAD LED structure.

Storage Precautions

- Perform soldering as soon as the moisture-proof packaging is opened.
- After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

VC1X1C48L3-310-V1 Mid Power UVB LED COB

VC1X1C48L3-310-V1 is a UV LED Chip on Board (COB) module offering UV radiation at a peak wavelength of 308±5nm. Each COB is structured based on the patented 3-PAD LED Flip Chip mounted directly onto the Super Pillar MCPCB to further boost output efficiency and decrease the thermal resistance. The VC1X1C48L3 series is ready for plug and play with no soldering required and is equipped with a 30° lens for mid power UV output.

FEATURES & BENEFITS

- Dimensions: 15x15x4.27mm
- Ready for plug and play (solder-free)
- Equipped with 30° fused silica lens
- TVS built in for ESD protection

THE VIOLUMAS DIFFERENCE

- 3-PAD flip chip structure
- \bullet Lowest thermal resistance at 0.9°C/W
- Minimal thermal decay with higher output
- Industry-leading reliability & lifetime

BostonElectronics **Revised September 25, 2023**

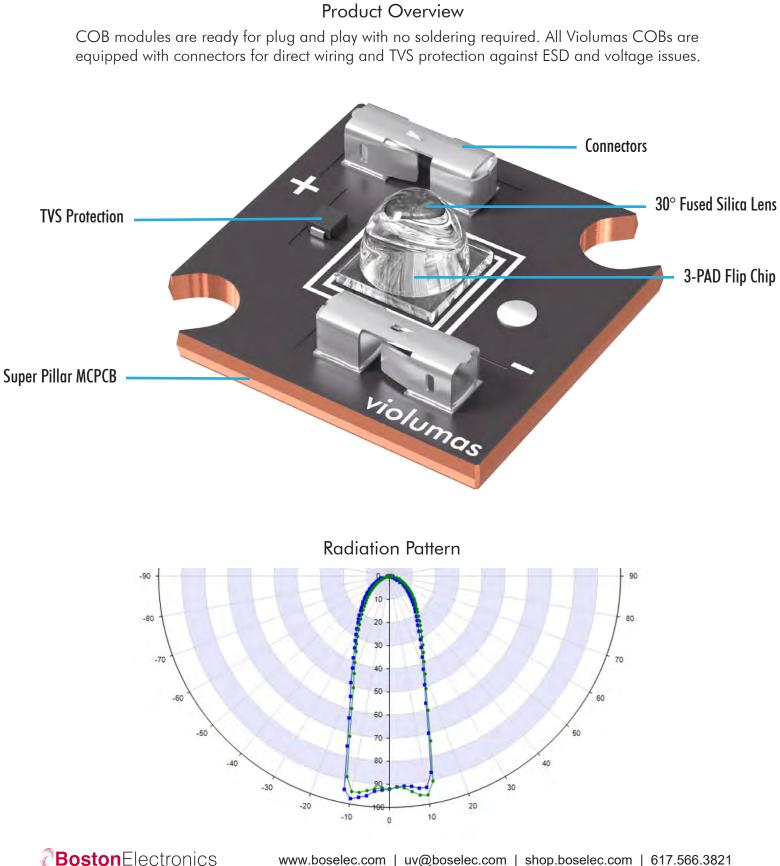
violumas _____

Mid Power UVB LED COB

Electro-Optical Characteristics at T=25°C and $\rm I_{\rm F}$ =700mA

Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	λ_{P}	nm	303	308	313
Forward Voltage	V _F	V	5.5	6.0	6.75
Radiant Flux	P_{o}	mW	100	115	130
Full Width of Half Magnitude	Δλ	nm	-	15	-
Radiant Angle	2 Φ _{1/2}	Degree	-	30	-
Thermal Resistance, Junction to Solder Joint	R _{th} (J-S)	°C/W	-	0.9	-

Absolute Maximum Ratings

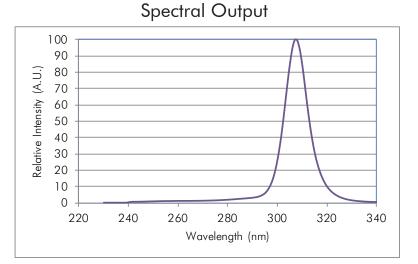

Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	1000
Reverse Voltage	V _R	V	5
Power	P _D	W	6.5
Junction Temperature	Tj	°C	120
Operating Temperature	T _{opr}	°C	-30 ~ 85
Storage Temperature	T _{STG}	°C	-40 ~ 105

Reliability

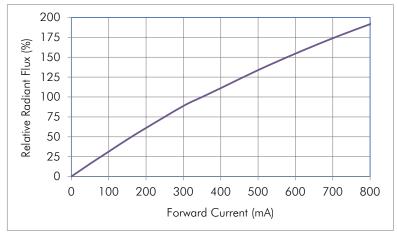
Test	Condition	Test Duration	Test Failed/Tested
Thermal Shock	-45°C ~ 125°C	2000 Cycles	0/10

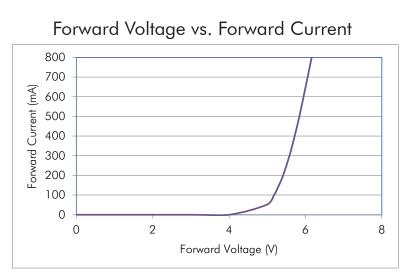
VC1X1C48L3-310-V1

Mid Power UVB LED COB



www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821


VC1X1C48L3-310-V1


Mid Power UVB LED COB

violumas

Forward Current vs. Relative Radiant Flux

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the 3-PAD LED structure.

Storage Precautions

- Perform soldering as soon as the moisture-proof packaging is opened.
- After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

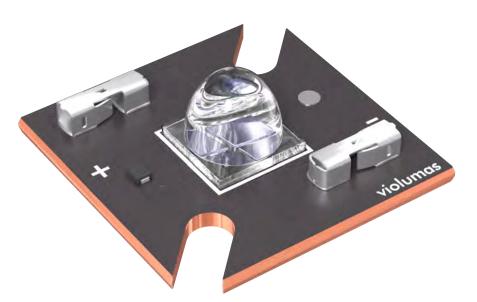
- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.


Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

VC2X2C48L6-310-V1 High Power UVB LED COB

VC2X2C48L6-310-V1 is a UV LED Chip on Board (COB) module offering UV radiation at a peak wavelength of 308±5nm. Each COB is structured based on the patented 3-PAD LED Flip Chip mounted directly onto the Super Pillar MCPCB to further boost output efficiency and decrease the thermal resistance. The VC2X2C48L6 series is ready for plug and play with no soldering required and is equipped with a 60° lens for high power UV output.

FEATURES & BENEFITS

- Dimensions: 20x20x6.1mm
- Ready for plug and play (solder-free)
- \bullet Equipped with 60° fused silica lens
- TVS built in for ESD protection

THE VIOLUMAS DIFFERENCE

- 3-PAD flip chip structure
- \bullet Lowest thermal resistance at 0.32°C/W
- Minimal thermal decay with higher output
- Industry-leading reliability & lifetime

BostonElectronics **Revised September 25, 2023**

violumas _____

High Power UVB LED COB

Electro-Optical Characteristics at T=25°C and $\rm I_{\rm F}$ =1400mA

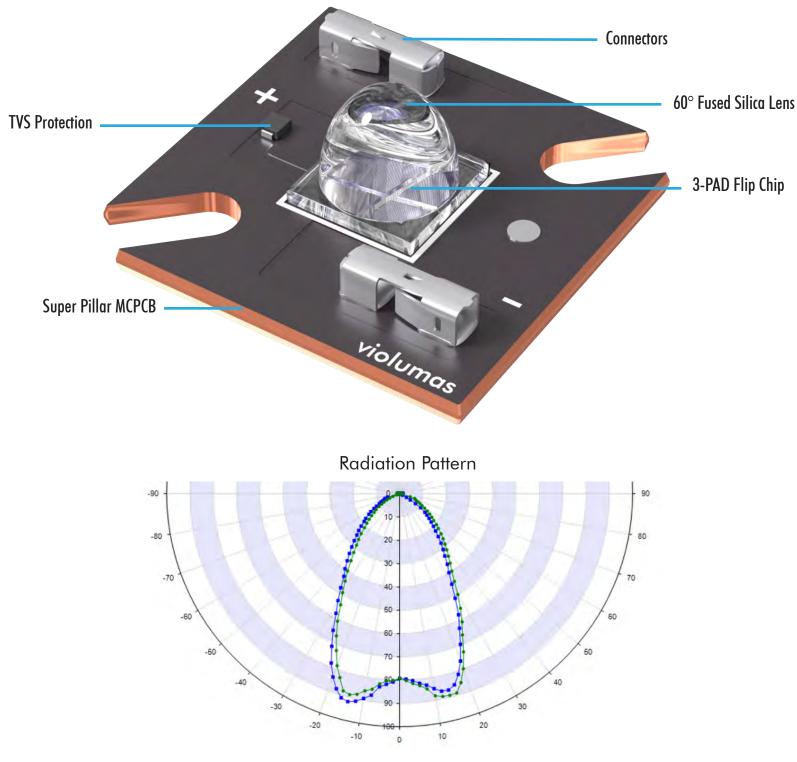
Parameter	Symbol	Unit	Min	Typical	Max
Peak Wavelength	$\lambda_{\rm P}$	nm	303	308	313
Forward Voltage	V _F	V	11.0	12.0	13.5
Radiant Flux	P_{o}	mW	340	400	450
Full Width of Half Magnitude	Δλ	nm	-	15	-
Radiant Angle	2Φ _{1/2}	Degree	-	60	-
Thermal Resistance, Junction to Solder Joint	R _{th} (J-S)	°C/W	-	0.32	-

Absolute Maximum Ratings

Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	2000
Reverse Voltage	V _R	V	10
Power	P _D	W	26
Junction Temperature	Tj	°C	120
Operating Temperature	T _{opr}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 105

Reliability

Test	Condition	Test Duration	Test Failed/Tested
Thermal Shock	-45°C ~ 125°C	2000 Cycles	0/10

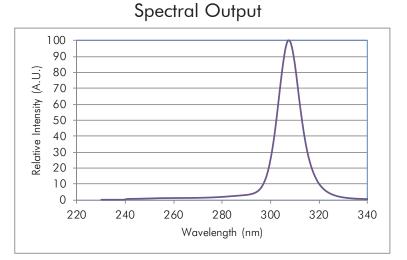


violumas ·

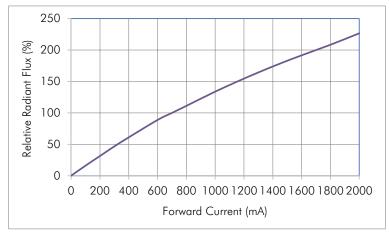
High Power UVB LED COB

Product Overview

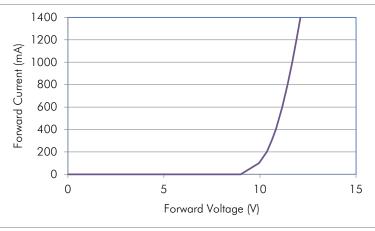
COB modules are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and TVS protection against ESD and voltage issues.


BostonElectronics

www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821


VC2X2C48L6-310-V1

High Power UVB LED COB


violumas

Forward Current vs. Relative Radiant Flux

Forward Voltage vs. Forward Current

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the 3-PAD LED structure.

Storage Precautions

- Perform soldering as soon as the moisture-proof packaging is opened.
- After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

VC12X1 Series 12-LED Light Bar COB

VC12X1 Series is UV LED Light Bar Chip on Board (COB) module with 12 chips bonded in a linear structure. Each COB is structured based on the patented 3-PAD LED Flip Chip mounted directly onto the Super Pillar MCPCB to further boost output efficiency and decrease the thermal resistance. The VC12X1 Series is ready for plug and play with no soldering required and is equipped with a 60° lens.

FEATURES & BENEFITS

- Dimensions: 304mm x 20mm
- Ready for plug and play (solder-free)
- Equipped with 60° fused silica lens
- TVS built in for ESD protection

THE VIOLUMAS DIFFERENCE

- 3-PAD flip chip structure
- Lowest thermal resistance at 0.075°C/W
- Minimal thermal decay with higher output
- Industry-leading reliability & lifetime

Revised November 7, 2022

violumas _____

12-LED Light Bar COB

Electro-Optical Characteristics for UVA (T=25°C and $I_{_{\rm F}}$ =700mA)

Part Number	Wavelength	Typ. Output	Forward Voltage	Power Consumption
VC12X1C45L6-405	405nm	12W	43.5V	30.5W
VC12X1C45L6-395	395nm	13W	43.5V	30.2W
VC12X1C45L6-385	385nm	12W	43.5V	30.2W
VC12X1C45L6-375	375nm	9W	43.5V	30.2W
VC12X1C45L6-365	365nm	6W	46.8V	30.8W

Absolute Maximum Ratings for UVA

Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	1000
Reverse Voltage	V _R	V	60
Power	P _D	W	48
Junction Temperature	T	°C	120
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{stg}	°C	-40 ~ 105

Reliability

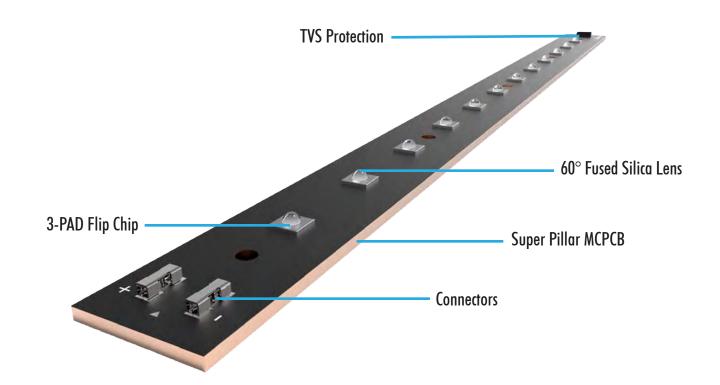
Test	Condition	Test Duration	Test Failed/Tested
Thermal Shock	-45°C ~ 125°C	2000 Cycles	0/10

Electro-Optical Characteristics for UVB & UVC (T=25°C and $I_{_{\rm F}}$ =1400mA)

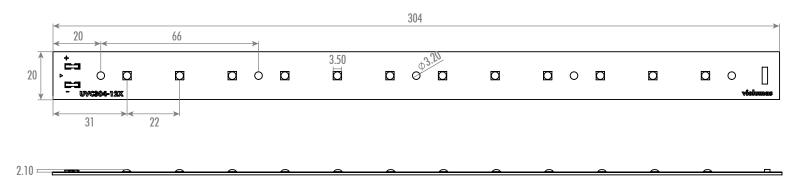
Part Number	Wavelength	Typ. Output	Forward Voltage	Power Consumption
VC12X1C48L6-310	310nm	1.35W	36.0V	50.4W
VC12X1C48L6-295	295nm	1.1W	36.0V	50.4W
VC12X1C48L6-275	275nm	1W	37.8V	52.9W
VC12X1C48L6-265	265nm	0.8W	38.4V	53.8W

Absolute Maximum Ratings for UVB & UVC

Parameter	Symbol	Unit	Value
Forward Current	I _F	mA	2000
Reverse Voltage	V _R	V	30
Power	P _D	W	84
Junction Temperature	TJ	°C	120
Operating Temperature	T _{OPR}	°C	-30 ~ 85
Storage Temperature	T _{STG}	°C	-40 ~ 105


Reliability

Test	Condition	Test Duration	Test Failed/Tested
Thermal Shock	-45°C ~ 125°C	2000 Cycles	0/10



Product Overview

COB modules are ready for plug and play with no soldering required. All Violumas COBs are equipped with connectors for direct wiring and TVS protection against ESD and voltage issues.

Mechanical Dimensions

Please contact *us* for additional information regarding performance curves, irradiance maps, and suitable heatsinks/drivers for this product.

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions, permanent damage may occur due to inner arcing within the 3-PAD LED structure.

Storage Precautions

- Perform soldering as soon as the moisture-proof packaging is opened.
- After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do not look directly into the UV light during optical measurements even through optical instruments. Protect the body, skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- Do not use brushes or organic solvents for cleaning the LEDs.
- Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.

Disclaimers

Violumas is not responsible for any damages that result from inaccurate use of the recommended guidelines. The information compiled in this document is a result of careful review of reference materials and reliable sources. Violumas does not make any claims regarding warranty or guarantee. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Disassembling Violumas products without consent is prohibited. No part of these documents may be reproduced in any form without prior written permission from Violumas. Please note that the data presented in this document is measured from the use of exclusive Flip Chip Opto patented products - the 3-PAD LED Flip Chip and the Pillar MCPCB.

UV LED Application Set

Plug-and-Play:

- COB UV LED
- Heatsink Kit
 - Driver Kit

Negative/Black Wire (x1), Positive/Red Wire (x1), 2-Terminal Connectors (x2)

Photos are provided for reference only and may not be accurate of the exact items received.

UV LED Application Set

Step 1: Mounting the COB LED onto the Heatsink

- If there is a protective film on the backside of the LED, please remove the film. Inspect the contact surfaces and ensure the contact surfaces of the LED backside and the heatsink are smooth. If surfaces are not smooth, high resolution sandpaper polish is recommended. Gently clean the surfaces with alcohol.
- Place the thermal pad on the coupling area where the LED is to be mounted onto the heatsink.
- Tighten down the LED onto the heatsink surface via provided screws. Do not over torque the screws.

Violumas LED Wire & Connector Kit:

- Each wire is pre-stripped for plug-and-play connections.
- One end of each wire is stripped approximately 5mm (short side). The short side should be inserted into the COB LED.
- One end of each wire is stripped approximately 10mm (long side). The long side should be coupled with the driver kit wires.

Short Side Long Side

Step 2: Connecting Wires to the COB LED

- Insert the short side of the "-" wire into the "-" COB connector.
- Insert the short side of the "+" wire into the "+" COB connector.
- Please insert the wire end fully into the appropriate COB connector (positive to positive, negative to negative). The connection should be tight even with a weak pull on the ends of the wires. Soldering is not required.

Step 3: Connecting Wires to the Driver Kit

- Couple the long side of the "-" wire to the "-" wire of the driver kit using the provided connector.
- Couple the long side of the "+" wire to the "+" wire of the driver kit using the provided connector.
- For coupling wires with the provided connector, please insert the wire end fully into an unoccupied terminal and snap the connector shut. The connection should be tight even with a weak pull on the 2 ends of the wires. Please ensure positive and negative wires are connected appropriately (positive to positive, negative to negative).

Notes for Operation

- Please ensure the driver kit is off before making any wire connections.
- Please connect the driver kit to a separate power strip (not provided) with an ON/OFF switch. Please utilize the power strip switch to turn the driver kit on and off. Directly plugging the driver kit into a wall outlet is not recommended.
- If the driver kit includes a dimmer dial, please ensure the dimmer dial is set to the lowest position before turning the power on.

www.boselec.com | uv@boselec.com | shop.boselec.com | 617.566.3821 All sets can be purchased via our web store

UV LED Application Set

Disclaimer

Violumas is not responsible for any damages that may result from inaccurate use of the recommended products. Violumas does not make any claims regarding warranty or guarantee of these products. It is recommended that each customer consults the Violumas engineering team before engaging Violumas products in extreme applications where the failure of the LED and damage to human health may be possible. Each user assumes full responsibility for determining the suitability of the use of Violumas products in various applications. Operating Violumas LEDs incorrectly or with an unsuitable driver may result in immediate failure and Violumas will not be responsible for replacement.

Precautions

Handling & Usage Precautions

- Exhibit extreme care when handling LEDs. Do not touch the LED with bare hands as doing so may contaminate and
 affect the optical characteristics of the LED. When using tweezers, do not apply excessive force, especially to the
 glass lens. Do not drop the LED as doing so may cause product damage.
- Ensure that electrostatic discharge specifications are followed. Static electricity and surge voltages may cause
 product damage. Proper electrostatic discharge protection equipment, working machinery, and protected mounting
 equipment are recommended.
- Do not expose the LEDs to volatile organic compounds as well as hazardous, acidic, and corrosive substances during storage and operation to avoid product damage.
- · Do not apply excess mechanical force and vibration while handling the product.
- Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Ensure that the PCB is suitable for the product and be wary of LED placement and possible PCB warpage.
- To avoid fault issues, do not couple any electrical wires to the metal substrate of the MCPCB or COB. If any
 electrical wires from the power source have contact with the MCPCB's metal base under power ON conditions,
 permanent damage may occur due to inner arcing within the 3-PAD LED structure.

Storage Precautions

- · Perform soldering as soon as the moisture-proof packaging is opened.
- · After the storage duration has exceeded the recommended time, products may need to be baked before soldering.
- Store all products in a controlled environment under 30° C free of dust. Do not expose the product to sudden changes in temperature, high humidity levels, and condensation.
- Please consult the Violumas engineering team for further information on storage precautions.

Eye Safety Precautions

- Avoid exposure to UV light during LED operation. Do not look directly into the UV light during LED operation. Do
 not look directly into the UV light during optical measurements even through optical instruments. Protect the body,
 skin, and eyes with UV protective equipment.
- Attach warning labels on all products and systems that use UV LEDs.

Cleaning Precautions

- · Do not use brushes or organic solvents for cleaning the LEDs.
- · Perform electrical and optical measurements before and after cleaning to ensure optimal performance.

Static Electricity Precautions

- Ensure that equipment and machinery are properly grounded.
- Anti-electrostatic attire (wristbands, gloves, footwear, etc.) is recommended.
- Damage inspection is recommended while performing characteristics inspection of LEDs.
- -----

UV LED Application Sets	Purchase on web store:	https://shop.boselec.com/collections/uv-led		
Set Part Number	UV LED	<u>Heat Sink</u>	<u>Driver Kit</u>	
265 nm LED SET-265-MED-110V SET-265-MED-220V SET-265-HI-110V SET-265-HI-220V	VC1X1C48L3-265 VC1X1C48L3-265 VC2X2C48L6-265 VC2X2C48L6-265	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A6W-ND-110V PS-700A6W-ND-220V PS-1400A25W-ND-110V request	
275 nm LED SET-275-MED-110V SET-275-MED-220V SET-275-HI-110V SET-275-HI-220V	VC1X1C48L3-275 VC1X1C48L3-275 VC2X2C48L6-275 VC2X2C48L6-275	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A6W-ND-110V PS-700A6W-ND-220V PS-1400A25W-ND-110V request	
295 nm LED SET-295-MED-110V SET-295-MED-220V SET-295-HI-110V SET-295-Hi-220V	VC1X1C48L3-295 VC1X1C48L3-295 VC2X2C48L6-295 VC2X2C48L6-295	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A6W-ND-110V PS-700A6W-ND-220V PS-1400A20W-ND-110V PS-1400A20W-ND-220V	
310 nm LED SET-310-MED-110V SET-310-MED-220V SET-310-HI-110V SET-310-HI-220V	VC1X1C48L3-310-V1 VC1X1C48L3-310-V1 VC2X2C48L6-310-V1 VC2X2C48L6-310-V1	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A6W-ND-110V PS-700A6W-ND-220V PS-1400A25W-ND-110V request	
325 nm LED SET-325-MED-110V SET-325-MED-220V	WC1X1C40L3-325 WC1X1C40L3-325	30.1.006770 30.1.006770	PS-350A3W-ND PS-350A3W-ND	
340 nm LED SET-325-MED-110V SET-340-MED-220V	WC1X1C40L3-340-V1 WC1X1C40L3-340-V1	30.1.006770 30.1.006770	PS-350A3W-ND PS-350A3W-ND	
365 nm LED SET-365-MED-110V SET-365-MED-220V SET-365-HI-110V SET-365-HI-220V	VC1X1C45L6-365 VC1X1C45L6-365 VC2X2C45L9-365 VC2X2C45L9-365	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A3W-ND PS-700A3W-ND PS-1400A16W-ND request	
375 nm LED SET-375-MED-110V SET-375-MED-220V SET-375-HI-110V SET-375-HI-220V	VC1X1C45L6-375 VC1X1C45L6-375 VC2X2C45L9-375 VC2X2C45L9-375	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A3W-ND PS-700A3W-ND PS-1400A16W-ND request	
385 nm LED SET-385-MED-110V SET-385-MED-220V SET-385-HI-110V SET-385-HI-220V	VC1X1C45L6-385 VC1X1C45L6-385 VC2X2C45L9-385 VC2X2C45L9-385	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A3W-ND PS-700A3W-ND PS-1400A16W-ND request	
395 nm LED SET-395-MED-110V SET-395-MED-220V SET-395-HI-110V SET-395-HI-220V	VC1X1C45L6-395 VC1X1C45L6-395 VC2X2C45L9-395 VC2X2C45L9-395	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A3W-ND PS-700A3W-ND PS-1400A16W-ND request	
405 nm LED SET-405-MED-110V SET-405-MED-220V SET-405-HI-110V SET-405-HI-220V	VC1X1C45L6-405 VC1X1C45L6-405 VC2X2C45L9-405 VC2X2C45L9-405	30.1.006770 30.1.006770 30.1.006846 30.1.006846	PS-700A3W-ND PS-700A3W-ND PS-1400A16W-ND request	