

GENERAL FEATURES

Properties of the SG01S-C18 UV photodiode

- UVC-only sensitivity, compliant with DVGW W294, PTB reported high chip stability
- Active Area A = 0,06 mm²
- TO18 hermetically sealed metal housing, 1 isolated pin and 1 case pin
- 10mW/cm² peak radiation results a current of approx. 720 nA

About the material Silicon Carbide (SiC)

SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170° C (338° F). The temperature coefficient of signal (responsivity) is also low, < 0,1%/K. Because of the low noise (dark current in the fA range), very low UV radiation intensities can be measured reliably. Please note that this device needs an appropriate amplifier (see typical circuit on page 3).

Options

SG01

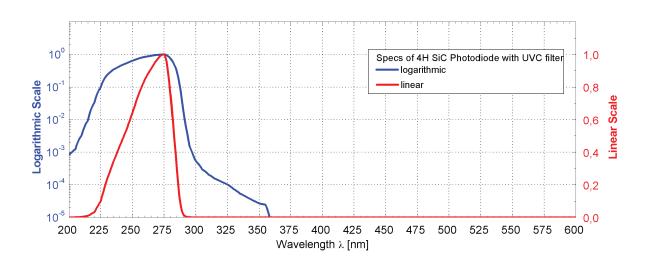
SiC photodiodes are available with seven different active chip areas from 0,06 mm² up to 36 mm². Standard version is broadband UVA-UVB-UVC. Four filtered versions lead to a tighter sensitivity range. All photodiodes have a hermetically sealed metal housing (TO type), either a 5,5 mm diameter TO18 housing or a 9,2 mm TO5 housing. Further option is either a 2 pin header (1 isolated, 1 grounded) or a 3 pin header (2 isolated, 1 grounded).

NOMENCLATURE

S, M, D, L, XL	nothing, A, B, C or E	18, 18 S090, 18S, 5, 5 S090	nothing, Lens MEGA, GIGA	
Chip area	Spectral response	Housing	Special	
S 0,06 mm ²	nothing = broadband $\lambda_{max} = 280 \text{ nm} \lambda_{S10\%} = 221 \text{ nm} \dots 358 \text{ nm}$	18 2-pin TO18 housing, h = 5,2 mm, 1 pin isolated, 1 pin grounded	Lens with concentrating	
M 0,20 mm²	A = UVA $λ_{max} = 331 \text{ nm}$ $λ_{S10\%} = 309 \text{ nm} \dots 367 \text{ nm}$	1815090 3-pin TO18 housing, h = 5,2 mm, 2 pins isolated, 1 pin grounded	lens, TO5 only	
D 0,50 mm²	B = UVB $λ_{max} = 280 \text{ nm}$ $λ_{S10\%} = 231 \text{ nm} \dots 309 \text{ nm}$	185 2-pin TO18 housing, h = 3,7 mm, 1 pin isolated, 1 pin grounded	MEGA with attenuator up to 0,5 W/cm ²	
L 1,00 mm ²	C = UVC $\lambda_{max} = 275 \text{ nm} \lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	5 2-pin TO5 housing, h = 4,3 mm for broadband; h = 6,7 mm for filtered UVA, UVB, UVC, UVI	GIGA with attenuator up to 7 W/cm ²	
XL 7,60 mm²	E = UV-Index spectral response according to CIEo87	5ISO90 3-pin TO5 housing, h = 4,2 mm, 2 pins isolated, 1 pin grounded		

BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821

Rev. 6.3 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

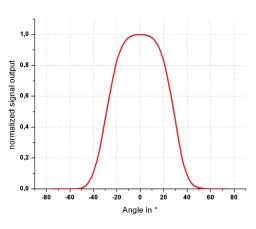

SPECIFICATIONS

Parameter	Symbol	Value	Unit
Spectral Characteristics			
Typical Responsivity at Peak Wavelength	Smax	0,120	AW ⁻¹
Wavelength of max. Spectral Responsivity	λ_{max}	275	nm
Responsivity Range (S= $0,1*S_{max}$)	-	225 287	nm
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C)			
Active Area	А	0,06	mm²
Dark Current (1V reverse bias)	ld	0,2	fA
Capacitance	С	15	pF
Short Circuit (10mW/cm ² at peak)	lo	720	nA
Temperature Coefficient	T _c	< 0,1	%/K
Maximum Ratings			
Operating Temperature	T _{opt}	-55 +170	°C
Storage Temperature	T _{stor}	-55 +170	°C
Soldering Temperature (3s)	T _{sold}	260	°C
Reverse Voltage	V_{Rmax}	20	V

....

.. ..

NORMALIZED SPECTRAL RESPONSIVITY



BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821

Rev. 6.3 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

FIELD OF VIEW

С.

R

LMC6001

 V_{cc}

Measurement Setup:

lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the photodiode window

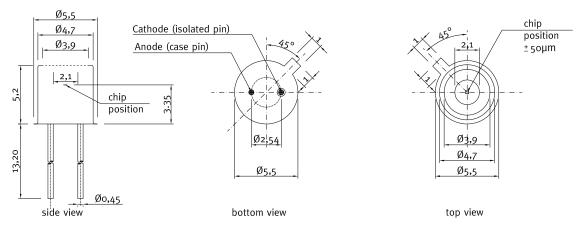
Calculations and Limits:

 $U_a = \ I_p x \ R_f = \ o \ ... \ \sim \ V_{cc}$

U_{a,max} depends on load and amplifier type

$$\begin{split} R_f &= 10 k \Omega \ ... \ \sim \ 10 G \Omega, \ C_f \geq 3 p F \\ Recommendation: \ R_f x \ C_f \geq 10^{-3} s \\ I_{p,max} &= U_{a,max} \div \ R_f \end{split}$$

Bandwidth = DC ...


$$\frac{1}{2\pi \ x \ R_f x \ C_f}$$

Example: I_p = 20nA, R_f =100M Ω , C_f =100 pF U_a = 20 x 10⁹A x 100 x 10⁶ Ω = 2V

 \mathbf{I}_{p}

TYPICAL CIRCUIT

U_a

BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821

Rev. 6.3 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.

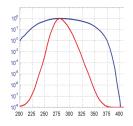
APPLICATION NOTE FOR PHOTODIODES

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short circuiting of the photodiode. Usual approaches are using a **Picoamperemeter** or a **transimpedance amplifier** circuit as shown on page 3.

UPGRADE TO A TOCON OR A PROBE

- TOCONs = UV sensors with integrated amplifier
- SiC based UV hybrid detector with amplifier (o-5V output), no additional amplifier needed, direct connection to controller, voltmeter, etc.
- Measures intensities from 1,8 pW/cm² up to 18 W/cm²
- UV broadband, UVA, UVB, UVC or Erythema measurements

Miniature housing with M12x1 thread for the TOCON series


- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body
- Integrated sensor connector (Binder 5-Pin plug) with 2m connector cable
- Easy to mount and connect

Industrial UV probes

- Different housings e.g. with cosine response, water pressure proof or sapphire windows
- Different electronic outputs configurable (voltage, current, USB, CAN)
 - Good EMC safety for industrial applications

CALIBRATION SERVICE

- Different NIST and PTB traceable calibrations and measurements for all sglux sensors
- Calibration of sensors for irradiation measurements
- Calibration of UV sensors on discrete wavelengths
- Determination of a specific spectral sensor responsivity

BOSTON ELECTRONICS | www.boselec.com | boselec@boselec.com | 617-566-3821