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by Fred Perry, 
Boston Electronics Corporation, 91 Boylston Street, Brookline, MA 02445 USA.   
Comments and corrections and questions are welcome.  

 
 The performance of a photodetector system can be predicted from the 
parameters D* (detectivity), Responsivity, time constant and saturation level, and 
from some knowledge about the noise in the system.  No photodetector should 
be purchased until a prediction has been made. 
 
 Detectivity and NEP 
 
 The principal issue usually facing the system designer is whether the system 
will have sufficient sensitivity to detect the optical signal which is of interest.  
Detector manufacturers assist in making this determination by publishing the 
figure of merit “D*”.  D* is defined as follows: 
 
 

                               
NEP

fA
D

Δ
*

×
≡              (equation 1) 

 
where A is the detector area in cm2 
            Δf  is the signal bandwidth in hertz  

and NEP is an acronym for “Noise Equivalent Power”, the optical input 
power to the detector that produces a signal-to-noise ratio of unity (S/N=1).   
 
 D* is a “figure of merit” and is invaluable in comparing one device with 
another.  The fact that S/N varies in proportion to A  and f∆  is a fundamental 
property of infrared photodetectors. 
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 Active Area 
 
 Consider a target about which we wish to measure some optical property.  
If the image of the target is larger than the photodetector, some energy from the 
target falls outside the area of the detector and is lost.  By increasing the detector 
size we can intercept more energy.  Assuming the energy density at the focal 
plane is constant in watts/cm2, doubling the linear dimension of the detector 
means that the energy intercepted increases by 422 =  times.  But NEP increases 
only as 24 = .  Conversely, if  the image of the target is small compared to the 
detector size, and if there are no pointing issues related to making the image of 
the target fall on the photodetector, then halving the linear dimension of the 
photodetector will similarly double S/N, since the input optical signal S stays 
constant while the NEP DECREASES by a factor of 24 = .  The moral of this story 
is: Neither throw away photons nor detector area.  Know your system well 
enough to decide on an optimized active area. 
 
 Bandwidth 
 
 Error theory tells us that signal increases in a linear fashion but noise (if it is 
random) adds ‘RMS’.  That is, Signal increases in proportion to the time we 
observe the phenomenon, but Noise according to the square root of the 
observation time.  This means that if we observe for a microsecond and achieve 
signal-to-noise of β, in an integration time of 100 microseconds we can expect S/N 
of ββ 10100 = . Bandwidth is related to integration time by the formula 
  

    
πτ2
1

=∆f        (equation 2) 

 
where τ is the integration time or  “time constant” of the system in seconds.  Time 
constant τ is the time it takes for the detector (or the system) output to reach a 

value of %6311 ≅





 −

e
 of its final, steady state value. 

 
 Signal 
 
 Signal in all quantum photodetectors is constant versus frequency at low 
frequencies but begins to decline as the frequency increases.  The decline is a 

mailto:boselec@world.std.com
http://www.boselec.com/


Page 3                                                                                         

Boston Electronics Corporation, 91 Boylston Street, Brookline MA 02445 
 (617)566-3821 *  boselec@boselec.com * www.boselec.com 

function of the time constant.  If Slow is the signal at flow, a few hertz, the signal at 
arbitrary frequency f » flow is 
 

    
2)2(1 πτ+

= low
f

SS                (equation 3) 

 

This is graphically illustrated below.  Frequency fc is the point at which lowf SS
2

1
= . 

   

 
 
 Noise 
 
 Noise is not as simple as signal.  Photoconductive devices like PbS, PbSe, 
and most HgCdTe exhibit “flicker” or 1/f noise, which is excess noise at low 
frequencies. Consequently, Signal-to-Noise ratio and D* are degraded at these 
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frequencies.  1/f noise actually varies as 
f
1 in voltage terms.  At high 

frequencies, the detector noise actually decreases according to the same 
relationship as signal decreases.  However, the difficulty in constructing following 
amplifier electronics that are significantly lower in noise than the photodetector 
results in system always having a noise at high frequencies that is no better than 
noise at low frequencies.  The following set of graphs illustrates this. 
 

 
 To predict low frequency performance of a photoconductor, the extent to 
which D* is degraded by 1/f noise must be estimated.  Either of the following 
ways is applicable:  
1. use the manufacturer’s published graphical data of D* versus frequency to 
determine the multiplication factor Nexcess to use to convert minimum guaranteed 
D* at its measured frequency to D* at the frequency of interest. 
2. use the 1/f  “corner frequency”fcorner > flow  reported by the manufacturer to 
estimate the degradation factor  at flow  as  
 

 excess noise factor  
low

corner
excess f

fN =    (equation 4) 

 
 In contrast to photoconductors, photovoltaic detectors normally have no 
1/f noise.  Signal is flat to or near DC and therefore D* is constant below the high 
frequency roll-off region, so no low frequency correction need be made.  
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 Spectral response correction 
  
 The D* of a quantum detector varies with wavelength λ.  The detector 
manufacturer typically guarantees D* at the wavelength of peak response, 
D*(peak).  When using the device at another wavelength λ, the D* should be 
corrected by an appropriate factor: 
 

    
)(

)(
peakatresponse

atresponseR
−−
−−

=
λ

λ  

 
    λλ RDD peak ×= **   (equation 5) 
 
where the relative response at wavelength λ is estimated by inspection of spectral 
response curves or other data supplied by the manufacturer. 
 
 Therefore, the optical input power required to produce a signal-to-noise 
ration of 1:1 for a stated system response time and wavelength becomes: 
 
Case 1: Photoconductor at low frequency: 
 

    excessN
D

fA
NEP ×

∆×
= *

λ
λ  (equation 6) 

 
Case 2: Photovoltaic detector at low to moderate frequency: 
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    *
λ

λ D
fA

NEP
∆×

=      (equation 7) 

 
Case 3: Photoconductor or photovoltaic frequency at higher frequency: 
 

    *
λ

λ DS
fA

NEP
f ×

∆×
=    (equation 8) 

 
 This yields an estimate of the input optical power to achieve a voltage 
output with S/N=1.   
 
 
 Upper Limits 
 
 Another important question is the dynamic range of the system, e.g. the 
ratio of the maximum signal available to the NEP of the system.  The upper limit 
of the system is typically set by the electrical gain of the preamp or the vertical 
gain of the oscilloscope used to display the signal, combined with the maximum 
output signal of the preamp or the maximum vertical deflection of the 
oscilloscope.  The dynamic range of the system is then expressed in multiples of 
the system NEP. 
 
 Let the preamp gain be G.  Let the responsivity of the detector in volts per 
watt (or volts per division in the case of an oscilloscope) at low frequency be Rlow 
and at frequency f let it be Rf where  
 
   flowf SRR ×=     (equation 10) 
 
 The voltage signal from the detector into the preamp or oscilloscope when 
S/N=1 corresponding to this responsivity will be  
 
   ff RNEPV ×=   (equation 11) 
 
Then the output of the preamp at frequency f and S/N=1 will be 
 
   GVV fpreamp ×=   (equation 12)   
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 Let the maximum output of the system be Ψpreamp volts (or Ψvertical vertical 
divisions in the case of an oscilloscope).  The multiple of the NEP that corresponds 
to the maximum output Ψpreamp will therefore be  
 

 Preamp Dynamic Range    
GV

D
f

preamp

×

Ψ
=      (equation 13) 

 
 Of course, with an oscilloscope it is usually possible to turn down the gain 
and thus increase the dynamic range.  However, preamps usually have fixed gain.  
In that case the input optical must be attenuated in order to keep the output 
from the preamp from saturating.  
 
 Sometimes the photodetector itself will saturate before the preamp.  Some 
process, thermal or photonic, intrinsic to the photodetector may limit it’s output.  
In this case, the maximum available (saturation) output signal should be specified 
by the device manufacturer, typically as a not-to-exceed output voltage Ψdetector..  
Graphically the situation is illuatrated as follows: 
 

 
 
 
Case 1: Dynamic Range limited by the preamp 
 

    
f
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f

preamp

VGV
D detΨ
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×
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=   (equation 14) 

 
Case 2: Dynamic Range limited by the detector      

    
GVV

D
f

preamp

f

ector

×

Ψ
<

Ψ
= det   (equation 15) 
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 This completes our prediction of system performance.  We have calculated 
the input optical signal that corresponds to S/N=1, and the maximum output that 
can be extracted from the system in terms of a multiplier of the minimum input 
signal.  The multiplier is “dynamic range”. 
 
 
 System options 
 
 As the designer, you have the following additional degrees of freedom in 
designing a system:  
 
1. You may increase the size of his optics in order to deliver more optical energy 
to the photodetector.  The key concept to remember is that throughput in any 
optical system, defined as Ω×= AT , where A is area in cm2 and Ω is solid angle 
field of view in steradians, is a constant in the system.  If AD is detector area and 
ΩD is detector FOV, then collector area AC and collector FOV ΩC are at best satisfy 

DDCC ATA Ω×==Ω× .  Increasing the collector aperture decreases the FOV. 
 
2. You may increase the efficiency of his optics (transmittance and reflectance 
optimization, etc). 
 
3. You may increase the power of his source in a cooperative, active system 
(though not in a passive one). 
 
4. You may increase the time he observes the signal, that is decrease the 
bandwidth and increase the time constant. 

 
 

=========================================================== 
 

• Appendix:  Sample Calculations 
 
See next page. 
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